
ACO: methodology

Preliminary Results and Future Work

Riccardo Cattaneo, Christian Pilato, Gianluca Durelli, Alessandro A. Nacci, Marco D. Santambrogio, Donatella Sciuto

Reconfiguration Aware Mapping and Scheduling

Source
Code

Task
Graph

Mapping Scheduling

Evolve or, if term
ination criterion m

et,
Runtim

e m
anager G

eneration
and (Partial) Bitstream

s G
eneration

Context Defintion: the project at a glance
C + OpenMP #pragma

FPGA

Faster is a EU research project aimed at facilitating
the use of reconfigurable technology by providing a
complete methodology that enables designers to

easily implement and verify applications on
platforms with general-purpose processors and
acceleration modules implemented in the latest

reconfigurable technology.

 Users specify both the application (written in C
with OpenMP #pragmas) and the architectural

template of the final solution to be implemented on
FPGA. The toolchain automatically devises a very

good solution in terms of architecture
specialization, application partitioning, mapping,

scheduling and runtime management.

While most of the parameters (even the architectural
template) can be guessed automatically by the

toolchain, the designer can interact with the tools at
each step of the exploration. This allows her to trade
off simplicity of porting the application to hardware

with potential performance improvements

This work revolves around the mapping and
scheduling phase of FASTER.

ApplicationDevice
Information

Task Graph
Generation

Library
Generation

Hardware
Specification

Software
Specification

Mapping and
Scheduling

Architecture
Generation

Platform Spec
Generation Code Generation

Decision Making

Refinement

Local Search: !(choice)
This function considers local state only when making a choice; implements a
reasonable heuristic for a local (greedy) search. We employ two local search

functions to select the task, before, and the implementation X processor pair, after.
The heuristic tries to reduce the overall average mobility on a processor while

spreading the computation over more processors, never violating area constraints.

Global Search: "(choice)
This function considers global state only when making a choice; implements the

metaphor of pheromones as a matrix of weights. Pheromones are deposited on trails
during exploration; the best solutions (ant's trails) are reinforced by other ants, the
others gradually evaporate and fade out, thus leaving behind only the best track.

Ant Colony Optimization (ACO) is a metaheuristic optimization algorithm. The
solution (in the sense of the objective function) is incrementally built as a

sequence of choices. At each step, each choice pertaining to the given step is
assigned a "goodness" value. The higher the value, the higher the chances that the

choice is made at that step (the choice is always stochastic - roulette wheel
selection). Two functions are involved in the evaluation process, balancing the design

space exploration between a local and a global search: ! and ".

An ACO-based, Reconfiguration
Aware Mapper and Scheduler

C11

C12

C13
.
.
.

C1max

C21

C22

C23
.
.
.

C2max

Ant
(solution)

C31

C32

C33
.
.
.

C3max

...

CS1

CS2

CS3
.
.
.

CSmax

Complete
Mapping

Sequence
+

Evaluation

Step 1 Step 2 Step 3 Step S

!
!

!

! !

! !
!

! !
!

!

Food

Obstacle

Obstacle

Obstacle

Obstacle

Obstacle

Obstacle

Obstacle

Obstacle

Obstacle

Obstacle

Obstacle

St
ep

 5
St

ep
 4

St
ep

 3
St

ep
 2

St
ep

 1
Obstacle

Obstacle

Obstacle

Obstacle

Start

Obstacle Obstacle

Food Food

Initial State Pheromone trails deposit Global Reinforcement

St
ep

 5
St

ep
 4

St
ep

 3
St

ep
 2

St
ep

 1

St
ep

 5
St

ep
 4

St
ep

 3
St

ep
 2

St
ep

 1

Obstacle Obstacle

Exp
lor

ati
on

/Evo
lut

ion

We report an example run of one of our experiments, carried out with a synthetic
application with 100 tasks randomly connected to form a DAG, each with multiple
hardware ad software implementations. The application is automatically mapped
onto a reconfigurable architecture with up to 30 reconfigurable regions, two soft

processors. The final number of reconfigurable regions actually used is 27 (the
template is successfully specialized). The overall area constraint is respected. The
exploration algorithm runs is less than 2 hours on a commodity Intel Quad Core i7, 8

GB of RAM.

Rationale of ACO for Mapping and Scheduling
If a specific mapping at a given step results in a good overall execution time more
frequently than not, try to build mappings which have that choice at that step more

frequently than not. Tend to reinforce those choices while the system evolve by means
of the pheromone metaphor.

First two phases: the source code, which is written in C + OpenMP
#pragmas, is analyzed. The functions that have been adequately

marked are assigned a node in the task graph along with the
producer/consumer relationship. The architectural template and the

set of tasks' implementations (i.e.: ways to execute a tasks on a
specific class of processors) is fed into the mapper as well. The

implementations are characterized by estimates on the number of
resources required to execute them (LUTs, BRAMs, etc…) as well

as estimates on the expected performance.

Mapping: this phase augments the task graph with the informations
incoming from the exploration phase, in which an optimization algorithm

finds the "best" mapping. In this work, we devise this mapping by
means of an Ant Colony Optimization-based algorithm where we

minimize the overall execution time of the resulting solution, while
guaranteeing that the final solution is admissible in terms of total

resource consumption. In order to take into account how reconfiguration
impacts on the system, reconfiguration tasks are introduced between
tasks mapped onto the same reconfigurable regions and their execution

times are estimated.

In the continuation of this work we are aiming at the introduction of exact methods for
solving the mapping and scheduling problem (for more performant mappings but

slower exploration times), a better integration with the rest of the toolchain and more
extensive evaluation of the overall approach, in particular against real life applications.

Scheduling: this phase introduces communication tasks in the
taskgraph and assigns a start and end times to each of them in the
augmented taskgraph. In this work, we employ a priority list based

scheduler to keep exploration time low (scheduling phase easily
becomes the bottleneck in the execution of the exploration loop). After

assigning a proper start and end time to each task, the total makespan
is computed and the mapping is scored proportionally to how fast it

allows the application to complete. If the termination criteria of the
exploration algorithm is not met yet, the performance metrics associated

to this solution are used to let the system evolve and improve the
solutions of the next generation.

