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Summary

RECENT years have seen dramatic improvements in High Level
Synthesis (HLS) tools: from efficient translation of numeric
algorithms to image processing algorithms, from stencil com-

putations to neural networks, relevant application domains and in-
dustries are benefiting from research on compute and/or memory/-
communications network.

In order to systematically synthesize better circuits for specific
programs and kernels, last decades’ studies focused on the develop-
ment of sound, formal approaches; one notable such framework is
the Polyhedral Model (PM) and the associated code analysis tech-
nique, collectively called Polyhedral Analysis (PA). Under this rep-
resentation it is possible to compute dependencies, find loop bounds,
and reorder instructions in a completely automated manner relying
on the same set of sound and comprehensive assumptions of PM.

We reconsider this rich state of the art, and elaborate on differ-
ent methodologies and implement the related toolchains to gener-
ate highly parallel and power efficient kernels running on recon-
figurable hardware, with the aim of distributing the workload on
multiple computational blocks while maximizing the overall power
efficiency of the resulting heterogeneous system. We approach this
problem in three different, interrelated ways.

First of all, we dedicated our early efforts to the development
of an accelerator-rich platform where the focus is on the coordina-
tion of multiple custom and software processors, via a novel Do-
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main Space Exploration (DSE) phase. Specifically, the work elabo-
rates on two relevant aspects: the effectiveness of Partial Reconfigu-
ration (PR) to attain improved energy delay and throughput metrics,
and the effectiveness of the heuristics chosen to realize the DSE step,
which feature both low complexity and good exploration times. To
this matter, we devote Chapter 2. We also extended the scope of this
work by assuming that multiple computing elements are in place,
and an adequate communication architecture is required to coordi-
nate those accelerators. This is discussed in Chapter 3.

Secondly, we focus on amply data-parallel codes, and develop
a novel HLS approach to using PM as a means to explicitly extract
and isolate data and computation from affine codes in order to effi-
ciently divide the workload among an arbitrary number of nodes, in
the light of the current and foreseeable trend of adoption of recon-
figurable hardware in the datacenter; towards energy proportional
computing, we improve the current state of art in single core accel-
eration, as our methodology obtains near-linear speedup with the
area at disposition to accelerate the given workload. To this subject,
we devote Chapter 4 and 5.

Lastly, we focus on a specific, and more restricted class of data
parallel codes, namely Iterative Stencil Loop (ISL), as they play a
crucial role in a variety of different fields of application. The com-
putationally intensive nature of those algorithms created the need
for solutions to efficiently implement them in order to save both ex-
ecution time and energy. This, in combination with their regular
structure, has justified their widespread study and the proposal of
largely different approaches to their optimization. However, most
of these works are focused on aggressive compile time optimization,
cache locality optimization, and parallelism extraction for the mul-
ticore/multi processor domain, while fewer works are focused on
the exploitation of custom architectures to further exploit the regular
structure of ISLs, specifically with the goal of improving power ef-
ficiency. This work introduces a methodology to systematically de-
sign power efficient hardware accelerators for the optimal execution
of ISLs algorithms on Field Programmable Gate Arrays (FPGAs). To
this extensive methodology, we devote Chapter 6.

As part of the methodology, we introduce the notion of Stream-
ing Stencil Time-step (SST), a streaming-based architecture capable of
achieving both low resource usage and efficient data reuse thanks
to an optimal data buffering strategy; and we introduce a technique,
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called SSTs queuing, capable to deliver a quasi-linear execution time
speedup with constant bandwidth. This is the core subject of Chap-
ter 7.

We validate all methodologies, approaches, and toolchains on
significant benchmarks on either a Zynq-7000 or Virtex-7 FPGA us-
ing the Xilinx Vivado suite. Results, which are reported in each Chap-
ter devoted to the respective subject, demonstrate how we are able
to improve the efficiency of all the baselines we compare against;
specifically, we improve the energy delay and throughput metric
when using our accelerator-rich platform, and dramatically improve
the on-chip memory resources usage using the PA-based method-
ologies, allowing us to treat problem sizes whose implementation
would otherwise not be possible via direct synthesis of the original,
unmanipulated HLS code.

We finally conclude the dissertation in Chapter 8 with a number
of potential future works.
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Sommario

DURANTE gli ultimi anni gli strumenti di sintesi ad alto liv-
ello (High Level Synthesis (HLS)) hanno conosciuto notevoli
miglioramenti: dalla traduzione efficiente di algoritmi nu-

merici a quella degli algoritmi di elaborazione delle immagini, dai
calcoli stencil alle reti neurali, disparati domini applicativi ed indus-
trie stanno beneficiando della ricerca sulla sintesi di elementi di cal-
colo, sottosistemi di memoria, e reti di comunicazione.

La ricerca degli ultimi decenni si é focalizzata sullo sviluppo di
approcci formali e corretti finalizzati alla sistematica sintesi di cir-
cuiti piú performanti per specifici programmi e nuclei computazion-
ali complessi. In tale senso é di notevole interesse il Modello Poliedrale
(Polyhedral Model (PM)) e la tecnica di analisi codice associata, cui ci
si riferisce collettivamente con il termine Analisi Poliedrale (Poly-
hedral Analysis (PA)), descritta con dovizia di particolari nel capi-
tolo 4. Tramite questa rappresentazione e manipolazione della com-
putazione é possibile calcolare le dipendenze, i gli indici degli es-
tremi delle iterazioni, riordinare le istruzioni in modo completamente
automatizzato, ed altro ancora. In questa tesi riconsideriamo lo stato
dell’arte ed i lavori relativi a quest’area di ricerca, elaborando metodolo-
gie innovative ed implementando le relative toolchain per generare
hardware riconfigurabile, con l’obiettivo di distribuire il carico di
lavoro su piú blocchi di calcolo, massimizzando l’efficienza energet-
ica complessiva di il sistema eterogeneo risultante. Approcciamo il
problema in tre modi differenti.
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Prima di tutto, abbiamo sviluppato una piattaforma basata su
acceleratori in cui l’attenzione é rivolta al coordinamento di piú pro-
cessori e software personalizzati, attraverso una fase di esplorazione
dello spazio dei parametri (Domain Space Exploration (DSE)). Il la-
voro approfondisce due aspetti rilevanti: primo, l’efficacia della ri-
configurazione parziale (Partial Reconfiguration (PR)) per ottenere un
miglioramento delle metriche prodotto energia-latenza e through-
put; secondo, l’efficacia delle euristiche scelte per realizzare il passo
DSE, di bassa complessitá computazionale e con ottimi tempi di es-
ecuzione. A questo lavoro dedichiamo il capitolo 2. Abbiamo anche
ampliato la portata dello stesso assumendo che piú elementi di cal-
colo siano presenti nel sistema, e sia necessario un’adeguata architet-
tura di comunicazione al fine di coordinare tali acceleratori. Questo
é discusso nel capitolo 3.

Successivamente ci concentriamo sui codici affini ampiamente
paralleli, e sviluppiamo un nuovo approccio alla sintesi ad alto liv-
ello (HLS) per utilizzare l’analisi poliedrale come un mezzo per es-
trarre ed isolare flusso dati e computazione, per poter dividere in
modo efficiente il carico di lavoro tra un numero arbitrario di nodi
alla luce della tendenza attuale e futura di adozione di hardware ri-
configurabile nei centri di elaborazione dati; nell’ottica dei sistemi
di calcolo energy proportional, miglioriamo l’attuale stato dell’arte in
termini di accelerazione single core, come dimostra la metodologia
descritta nel capitolo 5.

Infine, ci concentriamo su una classe specifica e ristretta di cod-
ici paralleli, gli iterative Stencil Loop (ISL), codici la cui computazione
efficiente risulta cruciale in una varietá di campi di applicazione.
La natura computazionalmente intensiva di questi algoritmi ha gen-
erato la necessitá di disporre di metodi efficienti per la loro com-
putazione al fine di risparmiare sia tempo che energia per la loro es-
ecuzione. Questo, in combinazione con la loro struttura regolare, ha
giustificato il loro ampio studio e la proposta di molteplici approcci
per loro ottimizzazione. Tuttavia, la maggior parte di queste opere
sono focalizzate sull’ottimizzazione statica aggressiva, l’ottimizzazione
della localitá dei dati, e l’estrazione di parallelismo nel dominio mul-
ticore, mentre un minor numero di lavori sono focalizzati sullo sfrut-
tamento di architetture riconfigurabili con l’obiettivo di migliorare
l’efficienza energetica della computazione. Come parte della metodolo-
gia, si introduce il concetto di Streaming Stencil Time-step (SST), un’architettura
basata sul modello dataflow in grado di coniugare tanto un basso uti-
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lizzo delle risorse quanto un riuso efficiente dei dati grazie ad una
strategia ottimale di buffering dei dati; e si introduce una tecnica,
chiamata accodamento di SST, in grado di fornire una riduzione del
tempo di esecuzione in funzione del numero di elementi di calcolo
presenti, con larghezza di banda off-chip costante, e incremento di
efficienza energetica fino a saturazione del sistema di calcolo. I capi-
toli 6 e 7 introducono questa metodologia per la progettazione sis-
tematica di acceleratori hardware efficienti per l’esecuzione ottimale
di algoritmi ISL su Field Programmable Gate Array (FPGA) mediante
SST.

Convalidiamo ogni metodo, approccio, e toolchain su applicazioni
di riferimento implementate su Zynq-7000 o Virtex-7 utilizzando la
suite Xilinx Vivado. I risultati, che sono riportati in ogni capitolo
dedicato al rispettivo argomento, dimostrano come siamo in grado
di migliorare l’efficienza di tutte le soluzioni di base con cui ci con-
frontiamo; in particolare, miglioriamo il prodotto ritardo-energia ed
il throughput quando utilizziamo la nostra piattaforma basata su ac-
celeratori; miglioriamo sensibilmente l’utilizzo di risorse on-chip di
memoria utilizzando le metodologie basate su PA, cosa che ci per-
mette di trattare problemi dimensioni la cui attuazione sarebbe altri-
menti non essere possibile via diretta sintesi del codice HLS manipo-
lata originale; e siamo in grado di scalare la computazione basata su
SST secondo modello teorico, cosa che massimizza l’efficienza ener-
getica del sistema di calcolo risultante.

Concludiamo la tesi col capitolo 8, in cui forniamo spunti per
eventuali sviluppi futuri di queste linee di ricerca.
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CHAPTER1
Introduction

IN this Chapter it is introduced the context required to motivate
the work done in this thesis. Section 1.1 describes this context,
namely the role of reconfigurable hardware in the advancement

of High Performance Computing (HPC) systems. In Section 1.2 the
main challenges that arise when designing the next generation sys-
tems are presented, while Section 1.3 provides a brief description of
the heterogeneous systems, with particular attention to Field Pro-
grammable Gate Arrays (FPGAs). The particular role in computing
of these devices is described in Section 1.4. Finally, Section 1.5 pro-
vides a high level overview of the proposed work within the context
of building more power efficient computing systems. Finally, Sec-
tion 1.5 delineates the contributions and the structure of subsequent
chapters of this thesis.

1.1 Context

The next generation of super computing platforms will deliver
unprecedented performance for the benefit of all scientific disciplines

1
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Chapter 1. Introduction

and industries.
In HPC, the important milestones are considered the emergence

of systems whose overall performance, expressed as the number of
Floating Point Operations Per Second (FLOPS) a given system is able
to perform, crosses the threshold of 103k, for some k ∈ N. A first im-
portant achievement was made in 1985 where the Gigascale (109)
was reached with the Cray-2. In 1997 Terascale (1012) was delivered
by Intel’s ASCI Red, and in 2008 Petascale (1015) was achieved by
the IBM’s Roadrunner. It is believed that in the near future, approxi-
mately in 2020, top tier systems will perform at least at the Exascale
(1018) level.

The need for such technological advancements is easily justified:
some of the key computational challenges that are faced not only
by industry and science, but our civilization as a whole, can only
be addressed using more and more powerful computing systems.
There are a lot of practical problems that can benefit substantially
from it: in climate modeling, it could help to adapt faster to climate
changes and sea level rise thanks to a much more accurate forecast-
ing; in medical systems it could allow a dramatic advancement in
the research for preventing and curing cancer as well as the other
challenging diseases of our age; in astrophysics it could finally lay
bare the secrets of the formation of the universe; in the energy field
the impact would be even stronger, as it could allow to better control
fusion but also to effectively reduce pollution helping to design in-
novative cost-effective renewable energy plants. Last but not least, it
is believed that Exascale (the next generation computing systems, as
of the day of writing) is the order of processing power of the human
brain at neural level, and because of that, an Exascale system could
allow the reverse engineering of a human brain, but also – and more
interestingly, though – the possibility to emulate it [14].

Current trends, however, suggest that there is the need to explore
new paradigms in designing future systems;indeed:

• Moore’s Law, if interpreted incorrectly as the doubling of per-
formance every 18-24 months, has hit a power wall, as indeed
clock rates have been essentially the same since the beginning
of 2000s.

• Moore’s Law, if interpreted correctly as the doubling of the num-
ber of transistors on a chip every 18-24 months, is still valid.
However, it must be stated that it is impossible to reach Exas-

2
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1.2. The Challenges of High Performance Computing

cale just by doing more of the same but bigger and faster. In-
deed, current technology cannot be used to build an Exascale
system, as it would likely cost more than 100 billion dollars,
and require its own dedicated power plant and over 1 billion
dollars per year to be powered [191].

• The attempt to hide the ever increasing memory latency wall
by designing larger and more complex cache hierarchies has
definitely hit its limit in terms of effectiveness on real applica-
tions.

• New parallelization strategies are needed. It is increasingly
complex to extract parallelism from sequentially designed pro-
grams automatically, but also the distribution of the load onto
an enormous number of Processing Elements (PEs) requires a
radically different approach.

• The traditional single-domain research activities where hard-
ware and software are explored in an isolated way cannot any-
more sustain the growing demand of efficient solutions.

These and other claims make up some of the relevant challenges
facing the designers of next generation high performance computing
platforms, a matter to which is dedicated the next Section.

1.2 The Challenges of High Performance Computing

While designing a new system that can be competitive with a
modern HPC requires a non negligible effort, managing to make a
performance leap of orders of magnitude is an infinitely more com-
plex task. There are in fact some important challenges within the
HPC field that must be addressed in order to be able to attain such
an accomplishment [40]. The focus of this section is to clearly de-
fine what they are, and how they impact the design of the next-
generation systems.

1.2.1 The Energy and Power Challenge

Power consumption is the most compelling concern, as it is criti-
cal to improve overall power efficiency by 2 orders of magnitude in
future computing systems. This is because one of the main cost of
operating an HPC system, i.e. of the operating expenditure (OpEx),
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is precisely power consumption. Indeed, assuming a linear scaling
of today’s best of breed system in terms of performance, the power
requirements for an equivalent Exascale system would still be of
the order of gigawatts, with an energy cost of more than 2 billion
dollars per year. Therefore new serious research challenges arise to
achieve a better power efficiency, and it is believed that this will be
the area in which significant improvement will be the most difficult
to achieve.

Additionally, the majority of the power consumed by supercom-
puters today is not used to perform computations, but is used to
move data around the system [183]. In fact:

• Power consumption increases proportionally to the bit-rate, so
as we move to ultrahigh-bandwidth links, it becomes a domi-
nant factor;

• Power consumption is highly distance-dependent, as it grows
quadratically with the wire length.

Therefore the emerging constraints on energy consumption will ef-
fectively influence the way of designing an HPC system, for exam-
ple leading to an increase in the usage of optical technologies to per-
form data movements, also adding to the goals of algorithm design
the power constraints as well as an efficient reduction of data move-
ments.

Designing an HPC system with lower power requirement leads
to various advantages, first of all the scale down of the cooling sys-
tem size which in turn involves in cutting the overall costs of the
HPC system. Even if there have been substantial improvements in
energy efficiency during the last years, HPC continues to be criti-
cized for its extraordinarily high energy demand, leaving a strong
need for an accelerated progress.

The U.S. Department of Energy has set the goal of 20MW as the
limit of power consumption for an Exascale system to keep its oper-
ational costs in a feasible range, whereas modern data centers typ-
ically provide that amount of power. However, the most efficient
large-scale HPC system, the german L-CSC [3], makes us understand
how distant the actual technology is from the desired goal, since it is
capable of achieving only 5 GFLOPS/W. An Exascale systems would
need an improvement of 10× with respect to the L-CSC’s power ef-
ficiency in order to stay under the limit of 20MW.
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1.2.2 The Memory Challenge

The second major challenge is related to storing information, and
is due to the lack of currently available technology to retain data at
high enough capacities, but also to access it at high enough rates and
low enough latencies, still remaining within an acceptable power
demand [105, 109] (see Figure 1.1).

Memory capacity using traditional Dynamic RAM (DRAM) tech-
nology turns out to be a matter of costs. Current trends show that al-
though the number of cores per processor is increasing, the amount
of memory ratio with respect to the available computational capac-
ity is decreasing. This is essentially due to the fact that the cost of
memory has not been decreasing as rapidly as the cost of floating
point performance, simply because the rate of increase of memory
density has never been as rapid as that of Moore’s law for the num-
ber of transistors on a processor. Even though progresses have been
made in the past, as the memory cost has decreased by a factor of
over 1010 in less than sixty years, current costs are still prohibitive
when a very large amount of it is needed.

Memory bandwidth is instead a structural issue rather than a
cost issue. In fact, while for processors the demand has ever been
for more rapid instruction execution, memory evolution has been
guided by the demand of an increase in density to maximize the
amount of data available to the processors, resulting in the employ-
ment of production technologies that allowed to build large capacity
memories, for which, however, the latency was relatively high. This
in turn resulted in an ever growing gap between the number of in-
structions a processor is able to execute and the number of memory
transfers that can be done within the same amount of time.

Processor designers addressed this issue by designing hierarchi-
cal memories to mask the memory latency. Modern processors are in
fact equipped with different levels of memory caches that can store
data from DRAM so that future requests for that data are readily
available. Cache memories located on-chip are typically built out of
Static RAMs (SRAMs), a type of memory built using transistors only.
While SRAMs feature vastly lower latencies with respect to DRAMs,
they have relatively low data densities and are also more suscepti-
ble to errors, so that designers are also required to design them with
error correction logic. This translates into overall higher costs, the
main reason why they are small-sized and still need to be backed by
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Figure 1.1: An illustration of the von Neumann Bottleneck. The graph refers to
the evolution of canonical CPUs. Performance is measured as the reciprocal of
latency. Source: [105]

traditional DRAMs. Due to the hierarchical nature of memory, it is
preferable for a processor to hit a required data block in cache, as it
can be accessed more rapidly. Intuitively, when the cache miss ratio
is high, the positive impact of the hierarchical memory system can
be completely void. Most frequently, high performance programs
are indeed coded with a specific architecture in mind, in order to
properly exploit both memory bandwidth,latency and cache hierar-
chies.

To summarize, the memory challenge must be addressed in two
different but nevertheless complementary ways:

• providing as much capacity at each level of the hierarchy, but
with an acceptable request in terms of cost;

• providing the most effective methods for moving data among
the levels as dictated by the needs of the various applications.
This is crucial also because memory latency heavily impacts
parallel cores performance, essentially due to the inherent need
of synchronizations.

1.2.3 The Concurrency and Scalability Challenge

The end of the increase in single compute node performance by
increasing instruction level parallelism and higher clock rates has
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left explicit parallelism as the only mechanism to increase the over-
all performance of a system. Mathematical models, numerical meth-
ods, and software implementations will all need new conceptual
and programming paradigms to make effective use of extreme lev-
els of concurrency. With clock rates flat at several gigahertz, systems
will require more than one billion concurrent operations to achieve
Exascale levels of performance and most of this increase in concur-
rency will be within the single compute node.

Concurrency can be measured in three ways:

• The total number of operations that are instantiated in each cy-
cle to run the applications.

• The minimum number of threads that run concurrently to pro-
vide enough instructions to generate the desired operation-level
concurrency.

• The overall thread-level concurrency that is needed to allow
some percentage of threads to stall while performing high-latency
operations, and still keep the desired dynamic thread concur-
rency.

A clear medium-term priority is the definition and implementation
of algorithms that are scalable at very large levels of parallelism and
that remain sufficiently fast varying latency and bandwidth avail-
ability; scalability should be modeled and analyzed mathematically,
using abstractions that represent key architectural features.

The increased levels of concurrency in a system greatly increases
the number of times that different kinds of independent activity
must come together at some sort of synchronization point, increas-
ing the potential for races, metastable states, and other difficult to
detect timing problems. It will be necessary to maintain something
like a billion threads of control, subdivided into a millions of pro-
cessors cores to achieve an exaflop. A directly related problem will
be the need to make sure that the required data is readily accessible
to the computational units. Thus the data must be staged appropri-
ately and the locality of the data must be maintained. Performance
scalability of computing systems has been and will continue to be in-
creasingly constrained by both the power required and speed avail-
able to enable data communications between memory and proces-
sor, but also by the phenomenon known as dark silicon [77], caused
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by the failure of Dennard scaling [71], i.e. transistor scaling and volt-
age scaling are no longer in line with each other. The mere increase
of the amount of cores cannot be carried out without exceeding in
power density, which in turn can result in the impossibility to keep
the chip temperature in the safe operating range. This limitation
forces us to systematically power up only a fraction of the entire
die, causing large idle or heavily underclocked portions of silicon
area, hence the term dark silicon. This phenomenon inevitably re-
stricts the amount of cores a chip can accommodate. These consid-
erations are already giving rise to richer parallelism paradigms, as
pure many-core/thread level parallelism are being integrated – at
the cluster level – by forms of process-level parallelism, an example
of which is MapReduce [70].

1.2.4 The Resiliency Challenge

Resiliency is the property of a system to continue effective oper-
ations even in the presence of faults either in hardware or software.
The vast majority of today’s applications assume that the system will
always operate correctly. However, an HPC system must be able to
use so many components that it is unlikely that the whole system
will ever be operating normally, as it is obvious that, the larger the
system, the shorter is the mean time between failures (MTBF). The
common approach for resilience, which relies on automatic or ap-
plication level checkpoint and restart, is not suitable for very large
systems, as the time for checkpointing and restarting could even ex-
ceed the mean time to failure (MTTF), resulting into an irreversible
deterioration of the integrity of the system. Also, the problem inten-
sifies when considering that there is the need of handling the lack
of resilience of not only computation, but also communication and
storage [106].

1.2.5 The Software Challenge

While large scale parallel processors have greatly increased the
performance potential for HPC, they have also introduced substan-
tial new software development problems. There are basically two
schools of thought regarding the issue of properly adapting soft-
ware development to the context of HPC. In the first case, the be-
lief is that it is feasible to extract parallelism opportunities from cur-
rent software, as well as enhance the available paradigms to be able
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to deal with the enormous amount of concurrency needed. In the
second case, the belief is that a radical rethink is required, and that
new methods, algorithms, and tools are needed to enable the perfor-
mance leap.
The reality is however that both philosophies must coexist, and that
the actual need is to figure out how to integrate and support existing
computation paradigms while enabling new revolutionary paradigms.

At the same time, it is also crucial to provide software developers
with the right skills, since up to now there is a serious lack of par-
allel programming skills across all the degrees of experience, from
entry level to very high end. An effort must be also made to raise
awareness among HPC users, scientists in the first place, to under-
stand the software challenges and train them to deal with the ever
increasing complexity of the systems [106].

1.2.6 Trend Analysis in High Performance Computing

Current technologies cannot deliver increasing processing power
on the assumption of Moore’s law about number of transistors: such
a high number with such a high power density generates too much
heating that cannot be dissipated in the limited space of a regular
die.

Modern datacenters require large investments in electricity sup-
plies not only to supply electronic equipments but to cool them down,
too. Additionally, electrical power drawn by the datacenter is hit-
ting limits imposed by utilities companies in most places, as well.
As power efficiency not only reduces costs in electronics but allows
bigger savings in conditioning systems, research is focusing on new
techniques to reduce the energy consumed by those systems [6].

The most relevant trend harnessing this problem is heterogeneous
computing. Heterogeneous computing refers to systems that use more
than one kind of processing unit. These are systems that gain per-
formance not just by assembling more components of the same type,
but by adding customized processing units, usually incorporating
specialized processing capabilities to handle particular tasks (and
not other). As these components are suited for a specific set of tasks
only, a lower number of transistors are usually required in order to
process them. Specialized components usually work at lower fre-
quency, too, reducing the overall power consumption of the system
– mathematical co-processors where introduced in the late 80’s for
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similar reasons. This was the first example of heterogenous system.
A more relevant and modern example in this direction is the intro-
duction of Graphic Processing Units (GPUs), that were initially used
to accelerate the compute-intensive work of texture mapping and
polygon rendering. Afterwards, units were added to accelerate ge-
ometric calculations such as the rotation and translation of vertices
into different coordinate systems.

This is due to the nature of the computation a Central Process-
ing Unit (CPU) is built and optimized for (see Figure 1.3): irregular
computation. Irregular computation – in this context – means that in-
struction flows are hardly (if not at all) predictable at compile time,
and even when they are, the data access pattern might not be regular
at all. Since CPUs’ internal structure has a limited amount of logic
dedicated to actual computation, only a relatively lower number of
numeric operations can be performed at a time. On the other hand,
GPUs, due to their simpler and parallel internal structure (see Fig-
ure 1.3), are better suited to scientific computation as they provide
multiple identical components that can simultaneously execute the
same instruction. Even if GPUs’ consumption are very high, given
an highly (data) parallel workload, they are capable of delivering
much more FLOPS per Watt due to the intrinsic parallelism of their
architecture and the amount of logic actually designed to computa-
tion.

Another reason for CPUs vs GPUs power efficiency is due to the
abstraction layer that implements its software programmability. For
this reason, GPUs have been extended in the last decade to support
generic computation and are the current heterogeneous component
of election (at least in the high performance computing sector).

Another important direction in heterogeneity is the introduction
of physics chips: they offload physics calculations from the CPU,
and are performed on dedicated hardware circuit (for example PhysX
[11], is a proprietary realtime physics engine middleware SDK, born
from an hardware solution by Ageia, that called it Physics Process-
ing Unit (PPU)).
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Figure 1.2: A representation of a CPU – the simplistic model underlines how only
a relatively small portion of the device is dedicated to actual computation.

Figure 1.3: A representation of a GPU – the simplistic model underlines how a
relatively large portion of the device is dedicated to actual computation.
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Phi cores [5] are based on the same idea of the multicore architec-
ture, but relying on more, less complex micro processors. The basic
idea that led to the design of such component is that these cores can
retain many of the existing programming models (and some tools)
that most developers are familiar with.

Trends show that we need to find a different approach that re-
duces power consumption, while increasing power efficiency and
parallelization. Elaborating on these and other trends, we look for-
ward to a component that transcends this abstraction layer and uses
all the power it drains to make effective computation.

Among the other heterogeneous computing technologies, FPGAs
show an interesting set of features that suggest that these devices
will become a relevant computing fabric in the near future. FPGAs,
differently from CPUs or GPUs, don’t feature specific low level cir-
cuitries, to be programmed using a given language; instead, they
feature high level hardware blocks implementing specific functions
like: logic functions emulators, digital signal processing blocks (fea-
turing plenty of multiply and accumulate – MAC – stages), and ba-
sic so called block RAMs. Depending on how these blocks are con-
nected, computation takes place accordingly to designer’s will. This
technology allows the designer to implement very customized logic
circuits in order to accelerate the ”hot portion” of target applications
(or entire applications, depending on the context). This customiza-
tion process reduces, on average, the number of transistors required
to implement a specific functionality (compare this against the com-
plexity of a deeply pipelined, out of order, superscalar processor,
and its billions of transistors) – this way, it is possible to achieve in-
creased power efficiency figures.

However, FPGAs must be properly configured in order to obtain
power efficient processing units out of them. This process is very
complex (with respect to software designs only) as it involves both
careful analysis of the target application and multiple hardware de-
sign steps. Additionally, it must be repeated for every problem at
hand, resulting in a very time consuming process.

However, the design of custom architectures tailored around a
specific algorithm will result in huge energy savings, incrementing
the power efficiency of the system. Not all the problems can take ad-
vantage of this approach, but many can be efficiently implemented.

Programmability is an issue as FPGAs are programmed in a very
different manner than CPUs and GPUs. Current research – both in-
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Figure 1.4: A representation of an FPGA – the simplistic model underlines how
most of the device’s area is dedicated to actual computation.

dustrial and academic – is focusing on improving the experience of
software developers as they should concentrate on software algo-
rithms only, leaving a sophisticated toolchain the burden to imple-
ment it as dedicated set of circuits (for example, Xilinx [213] with
SDAccel SDK [13]).

1.3 Heterogeneous Systems

The majority of existing supercomputers generally achieve only
a fraction of their peak performance on certain portions of some ap-
plication tasks. This is because different subtasks of an application
can have very different computational requirements that result in
different needs for processing capabilities. An homogeneous archi-
tecture cannot satisfy all the computational requirements in certain
applications equally well.

Thus, the construction of an heterogeneous computing environ-
ment (like that in Figure 1.5) is more appropriate. Employing an het-
erogeneous system can be the solution to properly meet all the pre-
sented challenges, as it offers the opportunity to increase the compu-
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tational performance keeping low the energy requirements. Hetero-
geneous computing [185] refers to systems that use more than one
kind of PEs, each of which is particularly efficient within a specific
application domain. These PEs communicate through a system of
high-performance interconnections. To take advantage of such a sys-
tem, a given task is decomposed into subtasks, where each subtask is
computationally homogeneous, and assigned to the PE whose char-
acteristics are the most appropriate to its execution. One or more
PEs, being canonical CPU, are in charge of managing the offloading
to the other PEs, as well as the execution of general purpose compo-
nents of the computation such as operating system services.

Figure 1.5: A simple scheme of an heterogeneous system.

The rationale beyond the employment of an heterogeneous sys-
tem is that CPUs are designed to handle complex control flows, but
their general purpose nature makes them unfit to retain a high and
cost effective throughput whit respect to other available solutions.
CPUs are then coupled with other coprocessors, namely General
Purpose Graphic Processing Units (GPGPUs) and FPGAs, both of
which have specific characteristics that make them suitable to per-
form certain kinds of computation. GPGPU, being Single Instruc-
tion Multiple Data (SIMD) processors, perform very well on highly
data parallel tasks. They have a massively parallel hardware archi-
tecture, are capable of achieving high floating point performance
and have large off-chip memory bandwidth, however it is usually
very difficult to make GPGPUs work at their full capacity and use
all the available bandwidth. Also, for high end chips the power
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demand can be huge, even though they are still capable of deliv-
ering high power efficiency – at least with respect to conventional
CPUs, which justifies their employment as co-processors in hetero-
geneous systems. FPGAs offer very high I/O bandwidth and fine-
grained, custom and flexible parallelism. They are mainly composed
of three building blocks [108] (see Fiure 1.6): the Configurable Logic
Block (CLB) is the main component, it can implement one or more
function generators using Look-Up Tables (LUTs) which in turn im-
plement an arbitrary logic function, storing the result of the func-
tion for every possible combination of the input. The Input-Output
Blocks (IOBs) are in charge of connecting the signals of the internal
logic to an output pin of the FPGA package. The interconnection re-
sources allow the connection of CLBs and IOBs. An FPGA can have
additional resources embedded on the die, such as Random Access
Memory (RAM) cells (also called Block RAM (BRAM)) that can be
used to store data on-chip during the computation, Digital Signal
Processors (DSPs) and other specific processors.

Figure 1.6: The general architecture of an FPGA.

The structure of an FPGA enables tasks-tailored logic to be cre-
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ated on-the-fly, that, considering the ever-increasing computational
needs coupled with the frequency/power wall, is the perfect solu-
tion to have both performance and low power consumption. In-
deed, the employment of custom logic, shaped on the specific type
of computation, allows to have, within the entire fabric of an FPGA,
only the part demanded to implement the circuit to be powered
on. Therefore, an efficiently designed custom logic can lead to both
sustained performance and low power consumption, as previously
stated, thus high power efficiency. High Performance Reconfigurable
Computers (HPRCs) based on conventional CPUs and FPGAs as co-
processors have indeed been gaining the attention of the HPC com-
munity in the past few years. In these systems, the main applica-
tion executes on the CPUs, while the FPGAs handle kernels that
have a long execution time and are suitable to hardware implemen-
tations. Such kernels are typically data-parallel overlapped com-
putations that can be efficiently implemented as fine-grained archi-
tectures. Optimization techniques such as overlapping data trans-
fers between the CPUs and FPGAs with computations are useful for
data-intensive, memory bound applications.

However, there is an underlying complexity in heterogeneous
systems that simply cannot be handled with modern software so-
lutions, as different architectures must be programmed in different
ways. Therefore, there is the need to provide automatic solutions ca-
pable to hide the complexity of these systems, as well as promoting
the adoption of techniques that bring together software and hard-
ware design, the so called co-design, which is believed to be a promis-
ing solution to make Exascale computing a reality [32].

1.3.1 Metrics

Different HPC systems have in general really different architec-
tures, employ a variety of computing devices and handle data move-
ments with different approaches. Hence, there is the need to define
some standard metrics that can be used as fair terms of comparison.
A fair comparison of computing systems is essential, particularly so
within the HPC field; for this, the research community standardized
a number of significant metrics (and depending on the system, also
well-defined measurements procedures [4])

• Throughput, measured in FLOPS, Floating Point Operations
per Second
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• Energy-Delay product, measured in J·s

• Total Aggregated Bandwidth, measured in bit/s,

• Total Aggregated Absorbed Power, measured in watts (W), and

• Power Efficiency, measured in FLOPS/W.

In this thesis we design prototypal systems while focusing on
the optimization of our designs in terms of either energy latency,
throughput, and/or power efficiency.

1.4 Hardware Acceleration

In this section I describe what hardware acceleration is and why
it is employed to achieve higher power efficiency than today’s high
performance computing systems.

1.4.1 What is Hardware Acceleration

Hardware acceleration is a technique that consists of implement-
ing some, or all, parts of an algorithm via dedicated hardware cir-
cuits (as for example in Figure 1.7). Said circuits produce the same
results as their software counterparts [20, 58, 147, 164]. Tradition-
ally, the hardware designer was in charge to creating the circuits by
hand. The designer traditionally required a complete understand-
ing of hardware components and how they could be connected in
order to achieve the corresponding algorithmic operation. The en-
tire workflow is very time consuming, involved and error prone but
nonetheless required when the goal is to achieve the best perfor-
mance available. This workflow will make extensive use of Hard-
ware Description Language (HDL), which are difficult to understand
and manage for most software designers who usually are the ones in
charge of coding algorithms. To make a comparison between hard-
ware and software development, HDL based development resem-
bles the use of Assembly to optimize custom routines in C/C++ de-
velopment. Since HDLs were developed to describe hardware cir-
cuits, they are characterized by a low level of abstraction. Thus,
hardware designers must take into account every single detail such
as signals, state machines and their behavior over time. Also, de-
bugging at this level is very complex and an hardware and electronic
knowledge is required to understand waveforms, timing constraints
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and their impact in the final design.

Figure 1.7: Possible hardware implementation of IF statement

1.4.2 Why to employ Hardware Acceleration

The implementation of a dedicated hardware component has the
major benefit of speeding up portions of an application. In fact, it
is usually true that there is no CPU program that can run as fast as
a dedicated circuit given that the latter is comparable in terms of
technology and frequency to the former. This is due to the overhead
needed to maintain the CPUs as a general processor as possible (i.e.
in order to compute anything the software developer can think of).

This is also the reason why GPUs were introduced: a dedicated
hardware capable of running specialized instructions to compute
graphics-like processing (i.e. data parallel codes) very fast. This
kind of device features a lot of dedicated circuitery to do a spe-
cific task, such as transform geometric primitives or triangle setup/-
clipping; nevertheless, a lot of small and simple processing units
run in parallel, achieve better performance than a CPU in graphics
computation. Additionally, even if the GPUs were invented to do
graphics computation, in recent years it is becoming more and more
common to exploit their intrinsically parallel architecture to achieve
better performance on specific workloads, like scientific computa-
tion. These devices are more difficult to program than CPUs (mainly
due to the heterogeneous nature of the resulting system) but can
be programmed in a similar fashion. However, few drawbacks af-
fect GPUs, in order to maintain the processing as general as possible
for computation. For example, although GPUs usually feature high
throughput and very high internal memory bandwidth, it is usually
very difficult to make GPUs work at their full capacity and rarely
saturate the internal bandwidth.
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As programming GPUs is a very complex task, major vendors
put a lot of effort into introducing a set of Application Programming
Interfaces (APIs) and libraries to make the process easier. Notable
examples are Nvidia Cuda [2] and AMD Mantle [8] frameworks.
Moreover they show relatively low power efficiency with regards
to FPGA [53, 63, 197] on most workloads, for the aforementioned
reasons.

We pay overhead when we have a lot of data dependent behav-
ior inside the application. If the algorithm is static and every imple-
mentation detail can be known at compile time (apart from the true
values of the data needed to process) then we can create a very small
circuit that operates very fast multiple times, requiring less time and
far less power.

To summarize, GPUs can be considered suboptimal for high con-
sumption and relatively low power efficiency (at least, compared to
FPGAs).

This is where FPGAs play an important role. As we can tailor
the processing system around the application, by stripping away all
the intermediate steps, we achieve higher power efficiency. Unfor-
tunately, the development of even a small component is a very com-
plex process. In recent years, in fact, a lot of effort was put into
automating the creation of such systems by means of High Level
Synthesis (HLS). HLS tools synthesize circuits from languages such
as C or C++ instead of the less handy VHDL or Verilog, enormously
speeding up the development of hardware based systems.

1.4.3 High Level Synthesis

While HLS tools have been heavily studied in the past, only in
the recent years we have seen effective industrial tools available
in the market [88]. Current research is focusing on efficiently con-
verting numeric or image processing algorithms written in behav-
ioral languages directly into hardware implementations in order to
achieve better performance and lower consumption while lifting the
layer of abstraction in order to gain in designer programmability [26,
27]. This has been possible in the recent years because High Level
Synthesis (HLS) tools have become powerful and flexible enough to
allow relatively easy and fast synthesis of hardware circuits. Previ-
ously, hardware development required plenty of specific knowledge
in order to develop a fully working accelerator. High Level Syn-
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thesis (HLS) tools impose less requirements on designers and dra-
matically speeds up the development of a working system. How-
ever, without proper care, this comes at the cost of introducing large
overheads and slow-downs compared to manually designed imple-
mentations. This is due to the lack of knowledge that High Level
Synthesis (HLS) tools have in order to do optimizations on the re-
sulting components. In order to cope with these limitations, High
Level Synthesis (HLS) tools have special directives that can be used
to optimize the resulting components, with the only downside that
these directives need to be specified by the designer and are not de-
rived automatically.

1.4.4 Optimized High Level Synthesis

HLS tools usually feature lots of directives employed by design-
ers to signal the synthesizer how to generate different components
[64, 88], each with its own specific performance profile. Some of
them are useful to increment the throughput, others to minimize
the area and others again are explicitly used for lowering the power
consumption. For example, the dataflow directive can be used to par-
allelize function calls and/or nested loops creating different blocks
of circuits inside a single core, each capable to run concurrently with
each other. This directive also preserves the data dependences of the
input code to maintain the correctness of the output. Another useful
directive is the pipeline directive. This directive tells the HLS tools to
use more resources in order to create a pipeline inside the core, or
in case this directive is used with the dataflow directive, to create a
pipelined block inside the core. Directives such as array map, array
reshape or array partition serve the purpose to optimize the number
of BRAMs used inside the FPGA. Finally, the unroll directive can
partially or completely unroll a loop in order to run in parallel all its
iterations of a loop body (see [88]).

1.4.5 Input languages to HLS tools

Current hardware circuits can be generated in very different ways.
First of all, we can generate a Register-Transfer Level (RTL) de-

scription of the circuits from manually derived VHDL or Verilog,
each describing the hardware behavior. This is the standard, ineffi-
cient workflow in hardware design.
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1.4. Hardware Acceleration

As previously stated in 1.4.2 and 1.4.4, HLS tools are getting more
and more powerful, closing the gap between automatic and manual
implementation; plus, they allow the creation of RTL from high level
language such as C/C++, or with the newer OpenCL C compilers
from both Altera and Xilinx.

The reason why HLS vendors choose C/C++ is a three fold argu-
ment:

• The vast majority of the legacy code for numeric computation
is written in C/C++

• Designers are already productive and familiar with impera-
tive/procedural languages such as C/C++

• Designers can rapidly explore the impact of standard directives
(i.e design modes) to find better trade offs between latency, area
used, power consumption and throughput

While these are industrial considerations we cannot overlook,
there are other reasons to choose C/C++, namely:

• most syntax analyzers and compilers are written for C/C++ so
its easy to get robust tools to further enhance code deriving
from them

• It’s easy to simply port algorithms from a platform to another
and to HW, too, as C is well defined and standardized

• Support a familiar "hardware level of abstraction", providing a
link between high-level source code and low-level implemen-
tation [96]

On the other hand, other languages can be better as they can
leverage different, more hardware friendly formal semantics to pro-
duce better parallelizable codes.
Those features are, among others:

• No aliasing (i.e. Fortran)

• All parameter passing is done by value (we solve from lan-
guage itself some synchronization issues, i.e. Haskell, but we
do not resolve communication issues)
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Chapter 1. Introduction

• Passing arguments by value will waste memory very quickly
and so we need to rethink the algorithm in a more efficient way

• Atomic guards (BSV)

• Explicit memory hierarchy stores (partially, OpenCL)

Note that other languages can also use other means to get paral-
lel/optimized computation: for example, in Haskell you get for free
fast lightweight threads, parallel sparks and futures, software trans-
actional memory, core affinity control and so on. However, such
features mostly cannot be ported to HDL (even if there are projects
like [26, 27, 76, 120, 121, 127, 128, 194] that aim for it).

However, since the leading industry focuses on subsets of C-like
syntax languages, for the rest of the thesis I will consider HLS tools
targeting C/C++.

1.5 Thesis Contributions and Outline

Within this context, the work proposed in this thesis embraces
the principles of heterogeneous computing to make a little step to-
wards the achievement of the Exascale milestone by following three
different but related research lines.

First of all, we develop an accelerator-rich platform where the
focus is on the coordination of multiple custom and software pro-
cessors, via a novel Domain Space Exploration (DSE) phase. Specif-
ically, the work elaborates on two relevant aspects: the effectiveness
of Partial Reconfiguration (PR) to attain improved energy delay and
throughput metrics, and the effectiveness of the heuristics chosen to
realize the DSE step, which feature both low complexity and good
exploration times. To this matter, we devote Chapter 2. We also
extended the scope of this work by assuming that multiple comput-
ing elements are in place, and an adequate communication architec-
ture is required to coordinate those accelerators. This is discussed in
Chapter 3.

Secondly, we focus on amply data-parallel codes, and develop
a novel HLS approach to using PM as a means to explicitly extract
and isolate data and computation from affine codes in order to effi-
ciently divide the workload among an arbitrary number of nodes, in
the light of the current and foreseeable trend of adoption of recon-
figurable hardware in the datacenter; towards energy proportional
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1.5. Thesis Contributions and Outline

computing, we improve the current state of art in single core accel-
eration, as our methodology obtains near-linear speedup with the
area at disposition to accelerate the given workload. To this subject,
we devote Chapter 4 to introduce the background notions related to
Polyhedral Analysis (PA), and Chapter 5 to delineate the methodol-
ogy and the results.

Lastly, we focus on a specific, and more restricted class of data
parallel codes, namely Iterative Stencil Loop (ISL), as they play a
crucial role in a variety of different fields of application. The compu-
tationally intensive nature of those algorithms created the need for
solutions to efficiently implement them in order to save both execu-
tion time and energy. We introduce the notion of Streaming Stencil
Time-step (SST), a streaming-based architecture capable of achieving
both low resource usage and efficient data reuse thanks to a demon-
strably optimum data buffering strategy; and we introduce a tech-
nique, called SSTs queuing, capable to deliver a quasi-linear execution
time speedup with constant bandwidth. To these extensive method-
ologies, we devote Chapter 6 and Chapter 7.

Sources This thesis refers to the following materials:

• SMASH: A Heuristic Methodology for Designing Partially
Reconfigurable MPSoCs, by R. CATTANEO, C. Pilato, G. Durelli,
M. D. Santambrogio, and D. Sciuto. Appeared in the proceed-
ings of IEEE International Symposium on Rapid System Proto-
typing (RSP), 2013.

• K-Ways Partitioning of Polyhedral Process Networks: a Multi-
Level Approach, by R. CATTANEO, M. Moradmand, D. Sci-
uto, M. D. Santambrogio. Appeared in the proceedings of Re-
configurable Architecture Workshop (RAW), 2015

• Explicitly Isolating Data and Computation in High Level Syn-
thesis: the Role of Polyhedral Framework, by R. CATTANEO,
G. Pallotta, D.Sciuto, M. D. Santambrogio. Appeared in the
proceedings of International Conference on Reconfigurable Com-
puting and FPGAs (ReConFig), 2015

• On how to Accelerate Iterative Stencil Loops: A Scalable Streaming-
based Approach, by R. CATTANEO, G. Natale, C. Sicignano,
D. Sciuto, and M. D. Santambrogio. Transactions on Architec-
ture and Code Optimization (TACO).
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CHAPTER2
Design Space Exploration of Partially

Reconfigurable Hardware Accelerators

IN this Chapter we analyze the impact of Partial Reconfiguration
(PR) on the overall performance of the computing system. More
specifically, we define an architectural template that we itera-

tively customize and objectively evaluate as part of a novel Domain
Space Exploration (DSE) phase. As part of this design space explo-
ration, PR is modeled and introduced as a possible degree of free-
dom. After describing the state of art and the overall methodology,
we show how the introduction of PR is an effective technique to im-
prove the overall performance of the resulting reconfigurable hard-
ware based accelerators.

2.1 Introduction

Nowadays, the design of efficient embedded systems relies on
heterogeneous Multi Processor System on Chips (MPSoCs) [142] that
combine general purpose processors with dedicated hardware ac-
celerators. Indeed, efficient tools (e.g., Xilinx Vivado HLS, Synopsys
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Chapter 2. Design Space Exploration of Partially Reconfigurable
Hardware Accelerators

C Compiler, Cadence C-to-Silicon, Calypto CatapultC) are becom-
ing very popular for the automatic generation of hardware imple-
mentations from the corresponding behavioral specifications, also
allowing the possibility to explore different implementations (e.g.,
trade-offs between performance and requirements of resources). As
a result, high-performance and low-power architectures can be ob-
tained with the hardware acceleration of different parts of the appli-
cation [74], even if their design still requires high expertise.

In particular, Field Programmable Gate Arrays (FPGAs) are very
attractive solutions that allow implementing large parts of the appli-
cation in hardware at low cost. Moreover, exploiting Partial Dynamic
Reconfiguration [178] (PDR) offers the possibility of reusing some
part of the logic across different tasks, despite of an overhead in
the execution time required to reconfigure the corresponding logic
cells. For this reason, this technique introduces several challenges
that have to be properly taken into account during the design of
such systems. In particular, one of the main issues in designing het-
erogeneous systems, especially when PDR is taken in account, is the
customization of the architecture [174] in terms of hardware accel-
erators (either static or reconfigurable) that are usually defined in
advance, potentially leading to sub-optimal solutions. Then, the de-
signer has to determine which tasks have to be hardware accelerated
and the level of reconfiguration for each of them (if any), also with
respect to the number of available resources. Moreover, since a task
reconfiguration requires to load the new configuration bitstream for
the corresponding region, this can introduce a penalty in the execu-
tion time if it is not properly taken into account in the design of the
application [29]. Finally, the effects of the data transfers between the
tasks are crucial aspects [85] and thus the impact of the interconnec-
tion infrastructure (e.g., bus, NoC, FIFO) has to be necessarily taken
into account. In conclusion, novel and efficient methodologies are
definitely required to take into account the reconfiguration aspects
for the early stages of the design process.

In this chapter, we propose SMASH (Simultaneous Mapping and
Scheduling with Heuristics), a design methodology that aims at ad-
dressing the limitations cited above. It combines different heuristics
for both customizing the architecture and implementing the appli-
cation to generate reconfigurable systems tailored for the input par-
titioned specification. Indeed, it determines which implementation
has to be adopted for each task and the level of reconfiguration of
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2.2. State of Art

the corresponding hardware modules, also potentially taking into
account different topologies that can adopted for interconnecting
the processing elements. In fact, SMASH includes an exploration
phase that is able to determine the proper mapping and scheduling
for the different tasks of the application, determining the tasks’ im-
plementations and the processing elements where they have to be
executed. During this exploration, it also determines which hard-
ware modules have to be included into the reconfigurable logic (ei-
ther to be used as static or reconfigurable regions) and the resulting
reconfigurations are taken into account during the evaluation of the
solution, along with the required communications. Moreover, tak-
ing into account the resulting resource requirement of the different
regions during the exploration allows to limit the generation of un-
feasible solutions. Simulations by means of virtual platforms have
been adopted to validate the proposed approach.

The rest of the chapter continues as follows. Section 2.2 overviews
existing approaches that aim at addressing similar problems, high-
lighting the contributions of the proposed solution whose overall
organization is presented in Section 2.3. Then, Section 2.4 presents
the heuristics at the basis of this work and the solution evaluation
method, respectively. In Section 2.5 presents the experimental eval-
uation of the proposed approach, while Section 2.6 concludes the
chapter and outlines the future directions of work.

2.2 State of Art

The synthesis of heterogeneous MPSoCs usually requires an ef-
ficient exploration of the design space. Daedalus [195] is an inter-
esting and integrated framework for starting from a sequential ap-
plication and then generating the corresponding parallel implemen-
tation, along with the corresponding system. However, it only fo-
cuses on streaming applications and reconfiguration aspects are not
taken into account. It is worth noting that these aspects are usu-
ally not taken into account for such applications due to synchro-
nization issues in the FIFOs when reconfiguring the blocks. More-
over, single stages of this computation are usually quite simple and,
thus, reconfiguration is usually not attractive in this scenario. On
the other hand, task-based applications are usually characterized by
time-consuming computational blocks interleaved by data transfers.
They are usually represented as Direct Acyclic Graphs (DAGs), as
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T0

T1 T2

T4T3

T5

Figure 2.1: Example of application DAG.

the example shown in Figure 2.1.
As opposite to creating full-custom architectures, platform-based

design [174] is instead a viable solution for reducing the complexity
of designing such systems by a a progressive refinement of an archi-
tectural template. Based on this idea, different approaches [56, 85,
119] have been proposed for optimizing partitioned applications, es-
pecially in the case of hardware acceleration. In particular, [119] uses
an approach based on task clustering, while [85] explores different
mapping and scheduling alternatives with a constructive approach
for limiting unfeasible solutions. However, in both of the cases, PDR
is not addressed and thus tasks can be executed in hardware as long
as they fit in the available area. On the other hand, [56] proposes a
method for mapping and scheduling of reconfigurable systems, but
the target architecture (e.g., the number of reconfigurable regions)
have to be defined in advance, potentially leading to sub-optimal
solutions.

In [100], the authors propose a set of techniques focusing on the
partitioning of the code and the generation of the corresponding
adaptive system. However, they mainly focus on dynamic aspects
and the support for the Operating System (OS), while we are more
interested in design-time decisions, in order to have a very lightweight
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OS or even a bare-metal synchronization of the application.
On the other hand, it is worth noting that, for creating a feasible

implementation of the system, another step is usually required: the
definition of the physical constraints within the FPGA to satisfy the
resource requirements (e.g., LUTs, BRAMs, DSPs) of the hardware
modules and to avoid their overlapping. The authors in [29] pro-
pose a methodology for mapping the tasks to processing elements
taking into account reconfiguration aspects and also placement is-
sues. However, their assumptions are quite simplistic (e.g., homo-
geneous resources for the regions) and they are difficult to be ap-
plied to recent FPGA devices, where the designer can design very
different and two-dimensional reconfigurable regions. In this chap-
ter, we separate the problems: we identify the number of hardware
modules while exploring the mapping of tasks with respect to them.
Then, we only verify that the total amount of resources required by
the regions can be effectively satisfied by the target FPGA. Extend-
ing the proposed approach to integrate the verification of the phys-
ical constraints is straightforward: a floorplanning algorithm (e.g.,
the one proposed in [45]) can be integrated in the evaluation of the
solution and return to the exploration algorithm if the assignment
results in a feasible allocation of the resulting regions or not. How-
ever, this is out of the scope of this work and it has been left as a
future work.

In conclusion, the main contributions of the proposed approach
can be summarized as follows:

• it optimizes the execution of the given task graphs with respect
to an architectural template, determining the level of reconfig-
uration for each of the tasks that are decided to be executed in
hardware and the nature of the hardware modules to be intro-
duced in the final platform;

• it defines an exploration framework that can easily accommo-
date different algorithms, metrics and evaluation methods to
design a reconfigurable system;

• it generates the specification of the virtual platform correspond-
ing to the identified solution.

This approach has been validated by means of synthetic applications
that are representative of real-life applications. The corresponding
solutions have been then evaluated with high-level simulations of
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FPGA
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Figure 2.2: Example of target architecture.

the generated virtual platforms through Synopsys Platform Archi-
tect [192].

2.3 Proposed Methodology

The proposed methodology, namely SMASH, starts from the de-
scription of the architectural template to be customized (as the one
shown in Figure 2.2) and of one or more partitioned applications
to be concurrently executed. Each of these applications can be rep-
resented as a DAG (as the one shown in Figure 2.1) and a unique
representation can always be obtained by combining them. A list of
admissible implementations (e.g., combination of performance and
resource requirements) has to be also provided for each task. For
software tasks, they can be computed by profiling or estimating its
execution. On the other hand, for hardware tasks, it is possible to
obtain both execution time and required resources by estimations or
by actual synthesis through a HLS tool such as Vivado HLS [15].

SMASH is then applied to this resulting DFG and it is mainly
composed of two parts, as shown in Figure 2.3:

1. an exploration of the mapping and scheduling for the input
DFG to statically determine which implementation has to be
adopted for each of the tasks and where they have to be exe-
cuted (e.g., processors or reconfigurable logic).

2. a final customization of the architecture, where it is possible to
identify static IP cores (i.e., modules with only one task associ-
ated with), as well as reconfigurable regions.

As output, it produces a description of the system to be implemented,
including the specification of the customized architecture and the

30



i
i

“phdthesis” — 2015/12/14 — 9:35 — page 31 — #47 i
i

i
i

i
i
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mapping and scheduling of the tasks (including reconfiguration ones)
with respect to this generated architectural solution.

In details, the exploration heuristic (further detailed in Section
2.4.2) aims at evaluating different solutions in terms of mapping and
scheduling to determine the best implementation for the given DFG
with respect to the target architecture enhanced with hardware mod-
ules. In particular, when assigning multiple tasks to the same region,
the heuristic is able to automatically compute its overall resources
requirements and, taking into account the requirements of all the
blocks, whether the solution is feasible or not. Then, the solution
evaluation determines the reconfiguration tasks that have to be in-
troduced (i.e., when consecutive tasks executing different functions
are assigned to the same module) and evaluates the performance of
the solution taking into account also the reconfiguration overhead.
Note that this term is computed on the basis of the size of the recon-
figurable region (i.e., its requirement of resources) as it results from
the generated mapping.

The last phase of the methodology is a post-processing step that
analyzes the mapping solution and the architectural instance gener-
ated after the first phase. In such a situation, each hardware module
that has been introduced by the exploration algorithm can have one
or more tasks assigned. If the module has only one task assigned,
it means that it can be converted into a static IP block, since no re-
configuration is required, thus reducing its area consumption. Oth-
erwise, modules with more than one task assigned are represented
as actual reconfigurable regions in the final architecture.

In conclusion, the methodology can produce the description of
the resulting system. In particular, we assume that the generated
solution performs correctly from the functional point of view and
then we are only interested into evaluating non-functional proper-
ties of the system (e.g., performance). For this reason, in this work,
we generated a virtual platform for the high-level evaluation of the
solutions, where each processing element is represented as a Virtual
Processing Unit (VPU) and all the VPUs are interconnected as spec-
ified by the input architectural template. Then, the initial DAG is
mapped onto these VPUs as specified by the generated mapping so-
lution and the reconfiguration tasks are assigned to the VPU that
has in charge of performing the actual reconfiguration (e.g., a dedi-
cated processor or one of the available GPPs) to correctly model its
execution overhead.
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Figure 2.3: Overview of the proposed methodology.

2.4 Mapping and Scheduling Exploration

Our mapping and scheduling exploration is based on Ant Colony
Optimization (ACO) [66]. This meta-heuristic relies on the abstrac-
tion of an agent (i.e., the “ant”) stochastically exploring the design
space, described as a sequence of choices. At each step, the agent
computes all the available choices and ranks them according to a
rule which helps the algorithm finding the best solutions, iteration
by iteration.

The rule for ranking choices relies on two heuristics: local and
global. The former is a function that assigns a score to a choice given
the current state of the exploration, and integrates knowledge about
the specific problem. It allows the agent to make an informed (yet
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local) decision about the next step of the exploration. The latter is a
model for the abstraction of ants’ pheromones, a substance ants nat-
urally release on the path they traverse and to which are naturally
attracted. Being a volatile substance, the intensity of the pheromone
trail will eventually disappear at a rate inversely proportional to the
number of ants traversing (i.e. reinforcing) it. On the other hand,
on a heavily traversed path the deposited pheromone trail will be
reinforced, and more ants will be attracted to it. If a path to a target
is optimal, ants will reach it in lesser time than other paths; thus, the
amount of pheromones on that trail will evaporate relatively slower
because it takes less time to traverse it (in other words, it is rein-
forced more frequently). Since the intensity on that trail is relatively
higher, relatively more ants will be attracted to it, releasing them-
selves more pheromones thus reinforcing again the trail. In a sense,
the amount of pheromones on a path globally keep track of how
good that path is to reach the goal.

An ACO algorithm implements the exploration in an iterative
way by using “generations of ants”. A generation is composed of N
ants performing design space exploration (DSE), all using the same
values of the global pheromone matrix. At the end of each gener-
ation, only some ants (i.e., a parameter K defined by the user) are
considered for global heuristic reinforcement, proportional to the
quality of the corresponding solution. After a convergence criteria
is met, the best solutions are kept and the others are discarded.

2.4.1 Detailed overview of the algorithm

This algorithm describes the steps required to map an application
represented as a DAG onto a reconfigurable architecture composed
of different processing elements (i.e., software processors, static IP
cores and reconfigurable regions) using the ACO technique with the
goal of minimizing the total execution time.

The algorithm evolves a certain number of generations of ants
(lines 1-22) until termination criteria is met. In our case, the ter-
mination criteria is the number of generations to evolve. Each ant
builds a solution as a sequence of choices (lines 2-22): in our spe-
cific case, they are mapping choices, i.e., 3-tuples of the form <
task, implementation,processing_element > representing how a
task should be implemented and where. In this context, an imple-
mentation is one of the available ways to execute a task either in

33



i
i

“phdthesis” — 2015/12/14 — 9:35 — page 34 — #50 i
i

i
i

i
i

Chapter 2. Design Space Exploration of Partially Reconfigurable
Hardware Accelerators

Algorithm 1: Overview of exploration algorithm
input : A task graph and a reconfigurable architecture
output: A mapping trace

forall the numGenerations do
forall the antsPerGeneration do

readySet← tasksWithoutPreds ()
scheduledSet← ∅
while readySet 6= ∅ do

forall the Ti ∈ readySet do
pTi ← localHeuristic (Ti)

end
chosenT← roulette (pT )

iSet← implsOfTask (chosenTask)
forall the Ii ∈ iSet do

pSet← processorsPerImpl (Ii)
forall the Pi ∈ pSet do

pIi ,Pi
← localHeuristic (Ii, Pi)

end
end
chosenI, chosenP← roulette (pI,P)
choice← <chosenT, chosenI, chosenP >
mappingTrace.add (choice)
readySet← resolveDependencies ()

end
ant.Metrics← computeMetrics (currentAnt)
ant.Objective← computeObjective (ant.Metrics)
thisGenerationSolutions.add (ant)

end
bestAnts.add (selectBest (thisGenerationSolutions))
updateGlobalPheromones (bestAnts)

end
bestAnt = selectSingleBestAnt (bestAnts)
return bestAnt.trace

software or in hardware. An ant computes a complete trace, i.e. a
list of mapping choices where an explicit scheduling priority is ex-
pressed by the ordering of the choices in the list itself.

In order to iteratively build a solution, the ants generate all fea-
sible choices at each step of the algorithm, ranking each of them ac-
cording to a rule based on two heuristic functions, one for the choice
of the task to map (lines 6-8) and one to choose both the implemen-
tation and the processing element to execute this task onto (lines
10-14). Note that the exploration starts with a minimum number
(minHW) of hardware modules to employ into the final architecture.
Then, at each step, the choice may reuse the allocated modules or

34



i
i

“phdthesis” — 2015/12/14 — 9:35 — page 35 — #51 i
i

i
i

i
i

2.4. Mapping and Scheduling Exploration

may instantiate an additional hardware module in order to better
exploit hardware resources, given that the area constraint is never
violated and the total number of hardware modules is less than a
maximum value (maxHW) or the number of tasks. After assigning
a score to each mapping choice (line 13), the ant selects one of those
choices using a roulette wheel selection scheme (line 14), where the
probability of each choice is proportional to its heuristic value. After
a decision for this iteration is made, the ant computes which tasks
may be executed afterward (line 17), and the process continues until
no more tasks need to be scheduled (lines 5-17).

At this point, the solution is evaluated according to a reconfiguration-
aware scheduler, and an objective function is assigned to it (line 19).
When the last ant of the current generation ends, the best solutions
are used to reinforce the global pheromone matrices (line 22).

The algorithm is known to efficiently solve large instances of task
mapping problems [85]. However, we further improved it to devise
efficient schedules exploiting knowledge about the problem and the
reconfigurable architecture onto which tasks are mapped.

2.4.2 Reconfiguration-aware Heuristics

As described in 2.4.1, a 2-step decision process is adopted to re-
duce the complexity of the exploration, as in [85]. The first one is the
task local heuristic, which selects, at each decision point, what is the
current “best” task to schedule among the set of ready tasks. The
second one is the mapping local heuristic, which selects, at each deci-
sion point, given a task, what is the current “best” choice of process-
ing element and implementation to execute the chosen task with. To
balance the relative weight of all the choices, all heuristic values (lo-
cal and global) are scaled in the (0, 1) interval, where higher means
better choices.

The task local heuristic yields high values for tasks characterized
by low mobility values and relatively fast execution times (averaged
over all the task’s possible implementations). This rule particularly
favors an early execution of ready tasks on the critical path that
might otherwise unnecessarily increase the overall execution time.
It also slightly increases the heuristic value for tasks that executes
relatively faster than the others.

The mapping local heuristic, instead, is computed in differing ways
depending on the implementation. Moreover, since the architec-
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ture might feature static, reconfigurable and software processors,
we have to rank the choices featuring any of them in a way that
they can be fairly compared to each other. The first step, then, is to
understand whether the implementation is hardware or software.

If software, we compute the heuristic as the product of two terms
in the (0, 1) interval: H1

SW and H2
SW . H1

SW is the likelihood of a soft-
ware implementation of the task with respect to any hardware one
(if available), to take into account how a software implementation
might be better or worse than a hardware one. H2

SW computes the
average mobility of all software processors, as the sum of the mobil-
ity values of all the tasks previously assigned to each software pro-
cessor, divided by the number of those tasks. Software processors
that haven’t been assigned tasks yet are automatically ranked bet-
ter than any other software processor choices. This choice privileges
software processors that have never been assigned tasks before and
that have been previously mapped with tasks with relatively lower
average mobility.

If hardware, instead, we consider the set of static IP processors
and reconfigurable regions available in the system. For the computa-
tion of the heuristic of a reconfigurable region, we compute the prod-
uct of three terms in the (0, 1) interval: H1

HW , H2
HW and H3

HW . H1
HW

is a general likelihood factor for a hardware implementation with
respect to any software one (if available). H2

HW is a factor that relates
to area usage for instantiating the implementation on this reconfig-
urable region. This term takes into account the number of tasks that
are yet to be scheduled in order to assign each task a (potentially)
fair share of the resources of the FPGA. We penalize the heuristic
values of those choices which would consume more resources (in
percent terms) than the percent advancement of the mapping algo-
rithm. For example, if the ant is mapping the 5th task out of 10
available tasks, a good choice must not consume more than 50%
of the available FPGA area, after mapping this task to the choice’s
reconfigurable region. If this limit is violated, but the overall con-
straint on total FPGA area is not violated, the choice is viable but
is consuming more area than it should and so its heuristic value is
halved. If instead the violation leads to a global area violation, the
solution is discarded (i.e., heuristic value = 0, preventing to take this
decision). This allow for an early discovery of unfeasible solutions
for faster convergence. H3

HW term is similar to H2
SW : the lower the

average mobility of the tasks already assigned to a reconfigurable
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2.4. Mapping and Scheduling Exploration

region, the better this term. At each iteration, it is required to eval-
uate the current solution and provide feedback to the exploration
heuristic. In this work, we only considered the overall execution
time of the application as the metric to be optimized. However, the
framework has been designed to accommodate the usage of differ-
ent metrics (e.g., execution time, power consumption and area oc-
cupation) or any combination of them. Furthermore, it is possible
to integrate different methods to compute the metrics, ranging from
mathematical models to actual simulations, to trade-off elaboration
time and accuracy of the evaluation. As an example, the designer
can adopt cycle-accurate simulations when analyzing small applica-
tions and then simpler heuristics when considering large ones. Also
the method adopted for the final validation, i.e., high-level simula-
tion with virtual platforms, can be integrated. In all the cases, the
metrics are intended to work on scheduling trace of the DAG pro-
duced by the exploration heuristic previously described.

It is worth noting that the scheduling trace only contains the
mapping decisions for the tasks on the processing elements; how-
ever, given the possibility of exploiting PDR, it is clear that this trace
is not enough to determine the application execution time since it
does not include the reconfiguration tasks. For this reason, it is then
necessary to construct a more detailed representation of the applica-
tion to be evaluated, starting from this scheduling trace. Note that
the transformations that we applied to construct this enhanced rep-
resentation can be applied to compute any of the metrics mentioned
above; however the designer can also apply other transformations
to support even more detailed descriptions of the system.

As an example, we consider the trace shown in Table 2.1: it re-
ports an admissible mapping and scheduling for the DAG of Figure
2.1 with respect to the architecture shown in Figure 2.2. It is worth
noting that reconfigurations are extracted only when two consecu-
tive tasks are assigned to the same region, but with different imple-
mentations. This allows supporting hardware reuse, when multiple
tasks are assigned to the same region with the same implementation;
in fact, in this case, reconfigurations are not required to switch the
functionality.

Starting from this trace, we introduce two more entities in the
graph to be scheduled which are the reconfiguration nodes and the
communication nodes. The former represents a reconfiguration that
has to be performed to change the functionality of a hardware mod-
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Table 2.1: Example of scheduling trace for the TG in Fig. 2.1

Task Name Implementation Processing Element
T0 A CPU0
T1 A RR0
T2 B RR0
T3 A RR1
T4 A RR0
T5 C CPU0

ule and it is mapped on a dedicated component (i.e., the ICAP on
Xilinx devices). The latter, instead, is used to represent the data ex-
changed directly between tasks or through the memories, accord-
ing to the communication infrastructure. Given this enhanced rep-
resentation, we adopted a simple yet effective list-based schedul-
ing algorithm [16] to compute the overall execution time (i.e., the
make-span) of the application. The execution time of each task is re-
ported into the implementation determined by the mapping, while
reconfiguration and communication overheads are computed as de-
scribed below.

2.4.3 Reconfiguration nodes

The heuristic described in Section 3.4 assumes the possibility that
the hardware modules may have multiple tasks assigned to the same
hardware module. Adding reconfiguration nodes consists in identi-
fying where the reconfigurations take place and performing an esti-
mate of their execution time. Starting from the information in Table
2.1, it is possible to determine where reconfigurations occur by iden-
tifying which hardware modules implement more than one different
implementation. In this example, it is possible to identify reconfigu-
rations only for the module RR0, since RR1 is set to execute only T3.
Once the reconfigurations have been identified, they have to be ac-
cordingly introduced in the task graph. In particular, each reconfig-
uration is inserted between the task implemented on the hardware
core and the one that needs to be reconfigured for the execution on
the same module. Furthermore since the scheduling trace also de-
fines the priorities between the tasks, the reconfigurations must re-
spect this order and they can be accordingly ordered. Given the trace
in Table 2.1, the reconfiguration nodes identified are reported in Ta-
ble 2.2 and the resulting task graph is reported in Figure 2.4 (left).
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2.4. Mapping and Scheduling Exploration

Table 2.2: Reconfiguration nodes identified starting from the trace reported in
Table 2.1.

Rec. Node Proc. Elem. Function Prev. Task Next Task Prev. Rec.
REC0 RR0 B T1 T2 -
REC1 RR0 A T2 T4 REC0

T0: A

T1: A

T2: B

T4: AT3: B

T5: C

REC0

REC1

T0: A

T1: A

T2: B

T4: A

T3: A

T5: C

REC0

REC1

Read

Write

Read

Write

Read

Write

Read

Write

Read

Write

Read

Write

Figure 2.4: Task Graph of Figure 2.1 extended with reconfiguration nodes (on the
left) and with both reconfiguration and communication nodes (on the right).
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Concerning the execution time of a reconfiguration task, we as-
sume that it is proportional to the size of the largest bitstreams of the
implementations assigned to the corresponding hardware module.
Then, we adopt the same approach proposed in [10] to estimate the
actual reconfiguration time required for each region. In our algo-
rithm all the reconfiguration nodes are scheduled to be executed in
sequence by a dedicated processor.

2.4.4 Communication nodes

After the reconfiguration, also the communication nodes can be
introduced, based on the topology of the interconnection between
the modules where the tasks have been assigned. Representing com-
munications as explicit nodes and keeping them separated from the
actual computation of the tasks allows to provide, if needed, a more
accurate simulation of the overall system behavior. For example,
it is possible to include bus congestion metrics during the simula-
tions and envision exploration phases that aim at customizing also
the communication architecture for the given application. Consider-
ing a bus-based architecture with shared memory, before executing
a task, it is necessary to read data from the memory and, after its
termination, to send the results to the memory to be used by sub-
sequent tasks. Thus, communication nodes are added before (read)
and after (write) each task and their execution time is proportional
to the amount of data to be transferred. The result of integrating
communication nodes to the task graph of Figure 2.1 is reported in
Figure 2.4 (right).

Regarding the communication time, this is estimated based on
the given amount of data to be transferred, as specified in the DAG
representation. Note that exploration of data transfers can be also
integrated, as in [85], but this is out of the scope of this work.

2.5 Experimental Results

We implemented SMASH in C++ and we then applied the re-
sulting framework to a set of benchmarks generated with TGFF, as
in [85]. We then generated the Virtual Platforms (VPs) correspond-
ing to the resulting solutions and we simulated them with Synopsys
Platform Architect [192] for rapid prototyping of system-level inte-
gration. This allows us to validate the proposed approach in a wide
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range of case studies and also to analyze the scalability of the ap-
proach. In particular, the generated task graphs are converted to
VP models by using the Generic Task Library, where their processing
time is based on the implementation details which the corresponding
tasks have been mapped onto. Then, each processing element model
is typically available in the Platform Architect library as a Virtual
Processing Unit (VPU). VPUs can thus represent all programmable,
configurable, or fixed logic processing elements, based on the speci-
fied VPU configurations. Also the ICAP controller of the reconfigu-
ration process is modeled as a VPU to execute reconfiguration tasks.
Then, modules of other regular IP blocks (e.g., interconnect, memo-
ries and DMAs) are instantiated to allow a complete simulation.

The generated task graphs ranges from 10 to 100 nodes, where
each task has at least one SW implementation and multiple HW
ones, representing realistic trade-offs between execution time and
requirement of resources. Large task graphs can also represent mul-
tiple applications to be simultaneously executed onto the target plat-
form. The adopted architectural templates (similar to the ones in
Figure 2.2) can easily represent embedded systems featuring either
soft or hard processors (e.g., Xilinx XUPV5 with Microblazes or the
Zedboard’s ARM Dual Core Cortex-A9 [25]), augmented with a set
of hardware modules. We adopted three architectural templates as
starting point for our experiments: static, mixed and reconfigurable.
Static identifies architectures where the FPGA area is divided into a
set of up to kS static IP cores. Mixed identifies architectures where
both IP cores and reconfigurable regions are employed to devise a
solution, but no more than kIPM IPs and kRM reconfigurable regions
may be used at once. Reconfigurable represents an architecture with
no more than kR regions. Note that in the second and the last cases,
the reconfigurable regions can be also deployed as static cores in the
final architecture, in case they are assigned with only one task. We
generated two sets of architectures from these templates, based on
commercially available Xilinx Zynq-7000 FPGA devices: an Artix-
7 and a Kintex-7, with 28, 000 and 125, 000 logic cells, respectively.
For the lack of space, we report only the results related to Kintex-7,
given that the other ones show a similar behavior.

Figure 2.5 reports the results obtained when executing SMASH
for 75 generations with 10 ants for each of them. Indeed, this combi-
nation of parameters is an empiric good compromise between greedy
search and evolution towards a global optimum based on the pheromone
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Figure 2.5: Speedups of mixed and reconfigurable architectures with respect to
the static one.

matrices. Note that, in the graph, we reported the execution times
normalized with respect to the fully static execution. Table 2.3 re-
ports instead information about the resulting architectures, along
with information about hardware accelerated tasks and reconfigu-
rations.

Results show that SMASH is always able to map a large number
of tasks in hardware, generally obtaining relevant speedups when
starting from mixed and fully reconfigurable templates. In particu-
lar, between 40 to 80 nodes, SMASH is able to obtain speedups up
to 3x with respect to static architectures, which limits the number
of tasks that can be ported in hardware without exploiting PDR. It
is worth noting that, for small instances, reconfiguration can also
introduce a slow-down in the execution time since, in this case, its
overhead has a proportionally larger impact. On the other hand,
larger instances show limited speedups because less tasks can fit in
the available area and both software tasks and data transfers can af-
fect the execution time.

The results in Table 2.3 also show that SMASH is effectively able
to identify the best combination of static IP cores and reconfigurable
regions based on the problem structure. Indeed, when starting from
both mixed and fully reconfigurable architectures, it is able to de-
vise which hardware modules require to be reconfigured and, at the
same time, determine how to assign and schedule the tasks to mask
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Table 2.3: Results in terms of architectures (number of static IPs and reconfig-
urable regions - IPs and RRs), along with number of hardware tasks (HW
tasks) and required reconfigurations (#Reconf).
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12 7 0 7 0 7 0 7 0 6 0 6 0
20 20 0 20 0 18 1 20 1 17 1 19 1
31 30 0 30 0 20 4 31 7 16 7 30 7
41 30 0 30 0 18 8 40 14 12 12 40 16
52 30 0 30 0 17 9 51 25 8 17 51 26
60 30 0 30 0 15 10 53 28 10 14 51 27
70 30 0 30 0 17 9 55 28 9 16 58 33
83 30 0 30 0 15 11 80 54 6 19 81 56
90 30 0 30 0 23 3 31 5 9 12 39 18
100 30 0 30 0 16 7 46 23 3 17 53 33

the reconfiguration overhead.
It is also worth noting that SMASH is able to efficiently exploit

available hardware resources, occupying always more than 90% of
them and never violating the total area constraint.

In conclusion, the results show that the proposed methodology
is effectively able to support the designer in the development of re-
configurable architectures, limiting the impact of the decisions per-
formed by the designer about the configuration of the initial archi-
tectural template in terms of hardware modules.

2.6 Conclusions and Future Works

In this chaper I presented SMASH, a heuristic and iterative method-
ology for supporting the design of reconfigurable embedded sys-
tems. The methodology have been tested using a set of synthetic
task graphs of different size with respect to different architectural
templates. It proved to be effective, overcoming the classical limita-
tion in the design of such systems, where the designer is faced with
the problem of manually deciding the structure of the architecture.

Future works will focus on two aspects: the first one is the inte-

43



i
i

“phdthesis” — 2015/12/14 — 9:35 — page 44 — #60 i
i

i
i

i
i

Chapter 2. Design Space Exploration of Partially Reconfigurable
Hardware Accelerators

gration of multiple metrics to optimize multiple objectives as for in-
stance performance and power consumption; while the second con-
sists in the integration of a floorplanning phase to identify also the
physical constraints of the resulting modules.
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CHAPTER3
On the Partitioning a Graph of Accelerators

IN this Chapter, we further elaborate on the work presented so
far hypothesizing that a more general structure of our Stream-
ing Stencil Time-steps (SSTs) could be that of a graph. Where

it be the case, we would need a mechanism to partition such net-
work onto multiple, interconnected computing elements, i.e. Field
Programmable Gate Arrays (FPGAs).

Being similar in nature, we assume that our graph of accelerators
can be ideally represented as the result of the manipulation of the
code mediated by a process network generator – specifically, a poly-
hedral process network generator. For this, we assume that our code
can be analyzed by PNGen [139, 143–145].

However extensively explored the problem is in the state of art,
we could not find a single work that could partition a network using
an efficient and effective heuristic partitioning scheme, guaranteeing
a fast execution time and the feasibility of the overall partitions. We
solve the issue by delineating one such scheme, which is exhaus-
tively reported in this chapter.
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3.1 Introduction

Process Networks(PNs)-based models of computation have proven
as a successful framework for describing multiple kinds of applica-
tions in the Reconfigurable Hardware (RH) domain. Due to their
intrinsically parallel and reactive behavior, and well-known tech-
niques to automatically manipulate some of their instances, they are
very amenable to Field Programmable Gate Arrays (FPGAs). One
problem associated with PNs is that the number of nodes is usually
proportional with the parallel portions of computation, and a tool to
automatically map tasks to FPGAs is required when multiple FPGAs
are employed to improve performance (via increased parallelism).
While it is possible to solve this problem in an exact manner via dy-
namic programming approaches, this is not the case when practical
graphs are under examination, i.e. graphs with potentially thou-
sands nodes. In this work we extend a well-known graph partition-
ing technique, namely Multi-Level K-ways partitioning algorithm,
in order to cope with such scenario.

General Partitioning Problem (GPP) plays a major role in data
analysis, machine learning, computer science, engineering, and re-
lated fields. Most graph partitioning algorithms optimize a ratio
between the cut and the size of the partitions, leading to an NP-
Complete problem [135]. However, this makes it impractical to par-
tition large networks, which is the reason why an entire field arose to
cope with this problem, namely Approximated Graph Partitioning.

Given an un-weighted graph G with V nodes and E edges and
given a number K, the Graph Partitioning Problem is to divide the V
nodes into K parts such that the number of edges connecting nodes
in different parts is minimized given the condition that each part
contains roughly the same number of nodes. If the graph is weighted,
i.e. the nodes and edges have weights associated with them, the
problem considers the sum of the weights of the edges connecting
nodes in different parts, while roughly keeping the weights in each
partition the same. The problem can be reduced into one where the
graph is split into N parts and then merging these nodes to build
a smaller graph with fewer nodes, intrinsically easier to partition
in the so called initial partitioning phase. In the approximated ver-
sion of this problem, adequate (possibly random) heuristics are em-
ployed to do so [113, 148].

Among the many successful heuristics for partitioning large, highly
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interconnected graphs, the Multi-Level Graph Partitioning approach
stands apart for both the average quality of the result (i.e.: differ-
ence in the resulting final partitions and cut sizes and those gen-
erated via the solution of an equivalent optimal problem) and the
execution time, usually confined to few minutes on large instances
(millions of nodes and arcs) on commodity-level machines. In this
approach the graph is recursively contracted to create smaller and
smaller graphs which should reflect the same basic structure as the
input graph [173]. After that, an initial partitioning algorithm is ap-
plied to the smallest graph, in order to obtain a seeding partition-
ing. Then, each partition of this initial partitioning is further de-
contracted (un-coarsening) and, at each level, a local search method
is used to improve the subsequent partitioning (decontraction/un-
coarsening step) induced by the coarser level. The Fiduccia-Mattheyses
heuristic for refining the partition after initial partitioning step is em-
ployed in this (and other) work to improve the edge cut [113].

Although several successful Multi-Level partitioners have been
developed in the last two decades, to the best of our knowledge,
none cope with a specific scenarios. Suppose to have a graph (G,V)
representing an application. Each node (which we will call process)
represents a potentially recurrent, potentially periodic task, while
edges (which we will call channels) represent FIFOs between pro-
cesses. In this scenario, each process is further characterized by an
amount of resources required in order to implement such process p
on an FPGA (Rp), and channels are characterized by an amount of
sustained data transferred. Additionally, we want to fully exploit
this model to compute (i.e. execute processes and data transfers) in
parallel, on a multi-FPGA system. In this case, between each FPGA
involved in the system, only Bmax data can be transferred each unit
of time, and each FPGA has an amount of resource Rmax. This is
a basic yet accurate representation of the common scenario where
a multi-FPGA is designed. In this case, partitioning of the network
(for mapping purposes) must take into account how many processes
can run onto a single FPGA, and which nodes to map onto which
FPGA, in order to cope with given resource constraints. First con-
straint is related to cut size between each pair of final partitions. In
order to meet this constraint we must consider the cut size not only
in the original graph but also between each final partition, so that
the cut size between each pair of partitions is less or equal to Bmax.
The second constraint is related to resources consumed by each node
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(and eventually, by each partition). These two constraints, along
with the problem formulation, makes up for the novel contribution
of this work.

In this work we present an algorithm that seeks and finds the
solution of the Approximated Graph Partitioning Problem in order
to satisfy two major constraints that arise when mapping process
networks (like Polyhedral Process Networks or Khan Process Net-
works, to name just a few) onto FPGAs. We use a classical approach
to ratio problems where we repeatedly ask whether the solution is
greater than or less than some constant which refers to our con-
straints, based on the Multi-Level Approach.

The rest of the chapter proceeds as follows. As the state of art of
GPP is vast, Section 6.2 presents a thorough review of it in order to
understand where this work fits and what problem we addressed.
Section 3.3 reviews, in particular, the basics of Multi-Level, K-ways
partitioning. Section 3.4 describes how we extended previous work
in order to cope with the mapping problem at hand. Section 7.5
presents experimental results, and the chapter is ended by Section
3.6 with comments and future work.

3.2 Related Work

There has been a large amount of research on GPP so that we
refer the readers to [42, 91, 181] for most of the material. Since find-
ing an optimal partitioning is NP-Complete (and is a well-known,
solved problem [97]), one is forced to set up for approximation al-
gorithms in order to find a solution (even though non optimal, in
the general case) in a practical amount of time. The part of the in-
vestigation in this area concentrates on approaches to solving the
Two-Ways Partitioning Problem (TWPP) for bi-sectioning the graph
(partitioning the graph into exactly two parts), which is also a NP-
Complete Problem. One of the primary attempts and maybe the
most well-known heuristic algorithm for partitioning graphs was
described in [112], which takes two separate sets as an initial solu-
tion of the problem, and trades pairs of nodes between them in order
to obtain a candidate solution.

Branch and Bound(B & B) strategy solves the partitioning in the
case of K = 2, for general weighted graphs have also been presented
in [171]. Yan andHsiao have presented a fuzzy clustering algorithm
to solve theGBP and apply it to Circuit Partitioning [215]. Other au-
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thors have been presented methods based on Genetic Algorithms
[48], Divide & Conquer approximation algorithms [95] and even
Ant Colony optimization [49]. Linear programming(LP) methods
became more popular after being shown that they were able to find
better cuts over KL.

Spectral methods additionally got vastly used, since they were
faster and produced great results. These are focused on the compu-
tation of eigenvectors of the adjacency matrix. Several works have
used such techniques like [67, 103, 166]. As an alternative, Multi-
Level algorithms for partitioning graphs were initially presented by
[31] and [104]. Regularly such Multi-Leveling systems match pairs
of adjacent nodes to define new merged graphs and recursively it-
erate this procedure in order to make a graph with arbitrary nodes.
The coarsest graph is then partitioned and the partitions is refined
on all the graphs back to the original graph.

Besides to heuristics and approximate algorithms for solving the
GPP, many authors have analyzed the lower bounds of known al-
gorithms and in special case of graphs(e.g. [198] and [75]).

Since GP is a hard problem, practical solutions are focused on
heuristics. There are two broad categories of methods, Local and
Global which we consider here in greater detail.

3.2.1 Local Search Methods

The partitioning can be described as breaking a graph into sub-
graphs and recursively do it in this way under some constraints in
order to make a graph with arbitrary nodes or less than a specific
marginal number. Here we will describe this problem by a method
known as iterative improvement.

The idea behind iterative improvement is to begin with an initial
solution, and make a new solution iteratively until we have a solu-
tion that is “good enough”. Optimality is measured with respect to
a given goodness criteria.

Most iterative improvement techniques are greedy. In a greedy
algorithm, the new solution is accepted only if it is better than the
old one. Non-Greedy methods (like: hill-climbing algorithms) will
sometimes accept a solution that is worse than the existing solu-
tion, the reason being that hill-climbing algorithms are used is to
avoid getting trapped in local minima. A hill-climbing algorithm
can sometimes climb out of a local minimum and find a better solu-
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tion by temporarily accepting a solution that is worse than the exist-
ing solution.

Two well known local methods in the context of iterative algo-
rithms for GPP are are Kernighan-Lin and Fiduccia-Mattheyses algo-
rithms, which were the first two-way cuts heuristics adopted by lo-
cal search strategies. Their significant disadvantage is the arbitrary
initial partitioning of the node set, which might have a negative af-
fect on final solution quality. Broadly speaking, given a partition of
a graph, a local search algorithm tends to enhance an objective func-
tion by moving nodes between partitions. These algorithms let a
node move at most once during one iteration of the algorithm. More
costly local search algorithms such as Tabu Search eliminate this re-
striction as far as possible, i.e. a node can be moved different times
during one iteration. However, today majority of the methods for
enhancing a given partition are variations of the FM algorithm.

Kernighan-Lin Algorithm

The Kernighan − Lin(KL) Algorithm is one the most popular
algorithm for the TWPP. KL algorithm works as follows:

1. The initial partition is generated Randomly. Create two sub-
graphs G1, and G2. If the graph has N nodes, the first n

2 are
assigned to G1, and the rest are assigned to G2.

2. A solution is acceptable only if both sub-graphs contain more
or less the same number of nodes.

3. The goodness of a solution is equal to the number of graph
edges that are cut between partitions.

4. The technique for generating new solutions from old solutions
is to select a subset of nodes from G1, and a subset of nodes
from G2 and swap them. To maintain acceptability, we always
select two subsets of the same size.

KL drawbacks are:

1. handling of unit node weights only,

2. handling of exact bi-sections only,

3. time complexity of a pass is high, O(n3).
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Fiduccia-Mattheyses Algorithm

There have been great improvements made to the KL algorithm.
The most imperative change is a slight adjustment of the algorithm
and the decrease in running time that was provided by Fiduccia −
Mattheyses(FM) [87]. Fiduccia and Mattheyses suggested fol-
lowing modifications:

1. Only one node is moved at a time,

2. The consecutive moves are made in the opposite directions,

3. The algorithm maintains a sorted list of candidate interior nodes
for moving to the other sub-graph, and updates it after each
move.

They succeed to decrease the complexity for a single pass toO(n) by
using modern data structures. Like the KL strategy, the FM strategy
performs passes where each node is moved at most once, and the
best bi-section observed during an iteration is used as input for the
next iteration. In any case, instead of selecting pairs of nodes, the FM
method chooses just single nodes for moving. Fiduccia-Mattheyses
balanced the algorithm and adopted adequate date structures such
that the asymptotic running time of their local search algorithm is
reduced to linear time O(n).

3.2.2 Global Search Methods

Global search relies on the properties of the entire graph and do
not rely on an arbitrary initial partition.

One such technique (specifically aimed at solving the TWPP) is
to formulate it as a quadratic optimization problem. However, due
to the nature of the optimization problem, realistic graphs still re-
sult unmanageable. For this reason, a class of graph partitioning
methods, called Spectral Methods – the most common example of
which is Spectral Partitioning, where a partition is derived from the
analysis of the spectrum of the adjacency matrix – relax this opti-
mization. Spectral techniques have been enhanced by several works
like [47, 151]. Unfortunately, to the best of our knowledge, none of
the previous methods contemplate the partitioning of applications
in the presence of simultaneous resource and bandwidth problem
constraints (or the equivalente in the respective formulations).
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Figure 3.1: Multi-Level Scheme [24]

Other methods contemplate Multi-Way Spectral Bisection Algo-
rithm and Parallel Graph Partitioning [30, 98] and Multi Level, K-
Ways Partitioning. As this last technique is the basis for this work,
we detail the inner workings in the following Section.

Previous work – as presented in this brief recall of the state of
art – focuses on heuristically minimizing the cut size associated to
the partitionings found. However, as the techniques focus on such min-
imization, to the best of our knowledge, none address the problem that we
approach in this work: a cut size minimization algorithm with novel con-
straints tightly related to the reconfigurable hardware domain.

3.3 Multi-Level, K-ways Partitioning

[104] formulated this strategy as it is known now. The Multi-
Level approach to GP comprises of three main phases, which are
reported in Figure 3.1.

In the contraction (coarsening) phase, a hierarchy of graphs is
created. The most common way to build this hierarchy is to itera-
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3.3. Multi-Level, K-ways Partitioning

tively identify matching M ⊆ E and contract the edges in M. Con-
traction should rapidly reduce the size of the input and each com-
puted level should reflect the global structure of the input network.

Contraction is halted when the graph is small enough to be di-
rectly partitioned using some costly other algorithm like the ones
described in the previous Section (such as KL, FM algorithms and
spectral partitioning).

In the un-coarsening phase, matching nodes and arcs – which
had been previously been merged together in the coarsening phase
– are iteratively un-coarsened.

During un-contraction of matching graphs, a local improvement
algorithm moves nodes between partitions to enhance the cut-size
or balancing constraint. Generally variants of the FM algorithm are
used. The vision behind this technique is that a good partition at
one level will also be a good partition on the next finer level, so that
local search will rapidly find a good solution. Moving a node on
a coarse level hierarchy typically corresponds to the movement of
a whole set of node movements of the finest level of the hierarchy.
Intuitively, the Multi-Level scheme has a global view on the opti-
mization problem on the coarse levels of the hierarchy and a very
local view on the finest levels with respect to the primary one.

[103] is the first work to report a linear time O(n) implementa-
tion of this scheme to obtain K−Partitions (using Recursive Multi-
Level Bi-section only on the coarsest level and a direct K − Way
local search algorithm). A variant of the Multi-Level algorithm has
been proposed in [148]. Their n− level approach is based on the ex-
treme idea of contracting only one single edge between two consecu-
tive levels of the Multi-Level hierarchy. During un-coarsening, local
search is done highly localized around the un-constructed edge. Us-
ing complicated data structures their algorithm requires sub-linear
time on real graphs.

Compared with Multi-Level Spectral Bisection, Multi-Level K-
Way partitioning is usually two orders of magnitude faster, and pro-
duces partitioning with generally smaller edge-cuts. This is why we
employed this basic scheme for the implementation of our partition-
ing algorithm, which is described in Section 3.4.
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3.4 Algorithm’s Internals

The proposed method is based on a variant of the aforemen-
tioned Multi-Level, K-Ways Partitioning (MLKWP) scheme.

In the proposed algorithm, the input graph is coarsened to a
parametrized size (default is 100). However, it is not un-coarsened
and refined back to the original graph in just one step. Rather, it is
un-coarsened up to a certain intermediate level and then coarsened
back to the lowest level if needed. This process of un-coarsening
and refining up to an intermediate level and coarsening again to the
lowest level is repeated a number of parametrized times, depending
on whether we are already meeting the constraints or not.

At each iteration, we generate different intermediate clusterings,
that are compare a posteriori using a goodness function; the best (i.e.
the one that is nearest to meeting the constrains) is chosen as the
"correct" intermediate un-coarsening candidate. This step incentives
rapid convergence while accounting for broad exploration of differ-
ent clusterings.

After the coarsening phase, we try to meet the K different parti-
tions with the help of initial partitioning phase.

3.4.1 Coarsening Phase

In the coarsening phase we use three type of different match-
ings in order to better explore different results given multiple search
strategies:

• Random Maximal Matching,

• Heavy Edge Matching,

• K-Means Matching.

Random Maximal Matching Nodes of a graph are randomly vis-
ited. If there is a node u which is not matched, then one of its un-
matched neighboring nodes is randomly selected. Two nodes are
said to be adjacent if there exists an edge that is incident to those
two nodes. If there exists such a node v, the edge (u, v) is included in
the matching and the nodes u and v are marked as matched. Node
u remains un-matched in the random matching if there is no un-
matched adjacent node v. The goal in the GP is to minimize the sum
of the weights of the edges between the nodes on the boundary of
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the parts of the graph. Using a randomized algorithm, a maximal
matching can be found so a randomized matching method may not
always produce satisfactory results for every graph. In order to de-
crease the edge cut value, heavy edge matching [113] can be used.

Heavy Edge Matching As the name suggests, the edges are sorted
according to their weights and matching begins by selecting the heav-
iest edge. All the edges are visited in descending order and edges
with un-matched end points are selected. This heuristic is used
when the graph size has been reduced substantially so that not much
work is done in sorting the edges.

K-Means Matching Clusters are formed on the basis of their weight;
a subset of near nodes is chosen accordingly.

The main objective and theme of this method is to divide the
graph into smaller partitions and based on the concept that it first
divides the problem into multiple sub-partitions by dividing the to-
tal number of the nodes by the number of sub problem you want
and assign the nodes to the partitions which is near to the specific
cluster [114].

We use in this work all three heuristics algorithms (Random, HEM,
K-Means) to get the matching. These heuristics are employed at dif-
ferent times, multiple times, in order to find the best matching for
the given graph. Each time we compare the results of the three
heuristics with each other and choose the best one.

Once we obtain the matching of nodes to coarsened graphs, we
create a map from the nodes in the un-coarsend graph to those in
the coarsened graph. Then, using the matches and the map, the
coarser graph is built, ready for the next iteration of the coarsen-
ing step. Thea adjacency matrix of the coarsened graph is adjusted
according to the new incidence between coarser nodes in the graph.
The edge weights, in particular, are all copied over but when the
matched nodes have a common neighbor: in this case weights are
merged into one and the new edge has a weight equal to the sum of
the weights of the merged edges. Similarly, the new node gets the
sum of the weights of the merged nodes. Any duplicate edge result-
ing from the process is merged together with their weights added.

The coarsening phase of our algorithm continues until few nodes
remain (for example 100 nodes – this is a parameter in our imple-
mentation). The resultant most coarsened graph is considered an
initial partitioning for the initial partitioning phase.
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3.4.2 Initial Partitioning Phase

After reducing the original graph into multiple sub-partitions we
produce an initial partitioning of it, with a number of partitions
much lesser than the required one.

We adopt a greedy approach, as it is a heuristic that usually yields
good results. Specifically, we partition the graph in such a way that
we have a balanced number of resources in each part (note how bal-
ancing resources is not a priority in our case, while meeting the re-
source and bandwidth constrain is). After that, we check the band-
width between each pair of partitions and use the FM algorithm to
meet the bandwidth constraint.

We start off with the heaviest nodes. After finding the heaviest
one, we’ll take it in the first partition among K partitions available
and add its neighbors (which are connected via edges to this node)
as long as the total number of resources assignable to each partition
(Rmax) is not violated. After this we apply the same for the other
partitions as far as all nodes assigned to exactly one partition. Since
this method is sensitive to the initial node selection, the whole pro-
cess is repeated with a parametrized number of randomly chosen
initial nodes (10 is default). Since the coarsest graph is no more than
a few hundred nodes (100 is our default), running this algorithm
K times does not add much to the total partitioning cost. The final
partitioning that gives the best cut-size is returned.

After this allocation we pay attention to the remaining nodes (if
any) which are not assigned to any partitions. First we try to put
each remaining node in accordance to its resources to the first par-
tition which has biggest free space for that node and do it for all
remaining nodes. If after this step there are still nodes to assign, we
assign each node to the partition which has the biggest free space
even though this implies violating the Rmax constraint. After this
step we check the Bandwidth between each pair. If it doesn’t meet
the constraints we use an FM-based algorithm to minimize it as far
as possible. Partitions will be changed and nodes will move between
partitions as far as constraints met.

We then un-coarsen as necessary, as described in the next Section,
in order to obtain the right number of partitions, each meeting the
constraints.
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3.4.3 Un-Coarsening Phase

During the un-coarsening (refining) phase, the initial partition of
the coarsest graph is projected onto the lower level, finer graph. This
procedure is repeated until a partition is projected onto the top level
graph and is refined to obtain the final partition and cut-size and
resource allocation for the graph. The mapping vector is used to
project the coarse graph partition onto the finer graph. But if we do
not met constraints, we go back to coarsening phase and then parti-
tioning phase (randomly), cyclically. If after a predetermined num-
ber of iterations a feasible partitioning is still missing, a message will
signal that partitioning with these constraints is either impossible or
we have to give the tool more time (i.e.: iterations) to compute such
solution.

3.5 Experimental Results

We compare METIS and GP using random generated graphs. We
employ particularly small instances in the following part of this Sec-
tion in order to visualize the different behavior of the two tools when
partitioning the given networks. In all cases, these graphs represent
Process Networks generated via suitable tools. Each process (i.e.:
node) is characterized by an amount of resources required to im-
plement such process on an FPGA (only one resource is considered
at this time, for example LUTs) and each channel (i.e.: edge) is char-
acterized by an amount of bandwidth consumed. Only bandwidth
outgoing from and incoming to different partitions consume band-
width – we assume that there is enough bandwidth on the FPGA to
sustain enough computation between nodes belonging to the same
partition (i.e.: FPGA).

We synthetically generated few graphs with the following goal
in mind: to demonstrate that GP can always partition the given network
while respecting resource and bandwidth constraints (or fail while doing
so) while METIS always partitions, regardless of said constraints. Graphs
are represented as incidence matrices, and are given as inputs to
MATLAB.
Figure(5.1)∼Figure(5.3) compare the results obtained running both

METIS and GP. Various GP parameters are used across all experi-
ments. For METIS, we used the default parameter values and de-
code the results inMatlab in order to compare the results with GP.
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We compare:

1. Local Edge Cut (i.e. bandwidth insisting between each pair of
partitions),

2. Maximum Resources Allocation (i.e. the maximum amount of
resources consumed by all partitions),

3. Algorithm’s Execution Runtime,

4. Global Edge Cut Sum.

The machine we employed is a 2.53 GHz Intel(R) Core(TM) i5-
M 460 CPU with 8GB RAM running Ubuntu14.0464bit. The code
runs under MATLABR2013a. METIS5.1.0 is used for comparisons.
We refer to the Graph Partitioner of this work as GP.

Experiment 1 We consider a graph with 12 nodes and 33 edges
for the first experiment. Maximum bandwidth constraint is 16 units.
Maximum resources constraint is 165 units.

As it is possible to see in experiment 3.1 – red font – METIS vio-
lates both constraints while GP meets both of them. However, the
size of the cut is slightly bigger for GP, which is a consistent re-
sult as METIS tries to minimize the overall cut, but generally vio-
lating bandwidth and/or resource constraint. GP does not violate
any partition-to-partition bandwidth constraint, but it fails at glob-
ally minimizing the edge cut. Actually, it does, under the bandwidth
constraint.

Figure 2 reports the unpartitioned graph (radius of nodes pro-
portional to weight), Figure 3 the same graph with weight and edges
allocation, Figure 4 partitioning with GP, and Figure 5 partitioning
with METIS.

Experiment 2 In Figure II we consider a graph with 12 nodes
and 30 edges for the second experiment. We apply the following
constraints: 25 for bandwidth and 130 for resources. METIS violates
bandwidth while meeting (incidentally) resources, while, again, GP
meets both of them.

Incidentally, the local refinement strategy employed translates,
in this graph, in a better overall global cut, as reported in Figure 3.2.

Figure 6 reports the unpartitioned graph (radius of nodes pro-
portional to weight), Figure 7 the same graph with weight and edges
allocation, Figure 8 partitioning with GP, and Figure 9 partitioning
with METIS.
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3.5. Experimental Results

Figure 3.2: Un-partitioned sample graph 1 before weighting and resource alloca-
tion.

Experiment 3
In the last experiment, whose data are shown in Figure III, we

consider a graph with 12 nodes and 32 edges. I apply the following
constraints: 20 for bandwidth and 78 for resources. METIS violates
bandwidth while meeting (incidentally) resources, while, again, GP
meets both of them.

Figure 10 reports the unpartitioned graph (radius of nodes pro-
portional to weight), Figure 11 the same graph with weight and
edges allocation, Figure 12 partitioning with GP, and Figure 13 par-
titioning with METIS.

3.5.1 Summary

As it is possible to see from experimental Figures GP can always
(on the test cases) partition without violating given constraints, which
is not guaranteed to be true with METIS. Additionally, in our test
cases the increase in cut size is near to negligible; however, this
might not be the case if we employed stricter constraints.
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Figure 3.3: Un-partitioned sample graph 1 after weighting and resource alloca-
tion
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Figure 3.4: Partitioning of the sample graph 1 with GP algorithm, both con-
straints are met, constraints are : bandwidth = 16 and resources = 163.

3.6 Conclusions

We presented a novel approach to partitioning a process net-
work in the presence of simultaneous bandwidth and resource con-
straints, based on the Multi-Level, K-Ways approach already known
in literature. We developed a tool that extends METIS in that it
copes with situations where partitioning must happen within pre-
cise bandwidth and resource constraints. Future work contemplates
the test of this system on actual multi-FPGA based systems where
the mapping of potentially large application graphs (process net-
works) is a difficult task to do by hand.
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Figure 3.5: Partitioning of the sample graph 1 with METIS algorithm, both
constraints are violated, constraints are : bandwidth = 16 and resources = 163.
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Figure 3.6: Un-partitioned sample graph 2 before weighting and resource alloca-
tion.
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Figure 3.8: Partitioning of the sample graph 2 with GP algorithm, both con-
straints are met, constraints are : bandwidth = 25 and resources = 130.
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Figure 3.10: Un-partitioned sample graph 3 before weighting and resource allo-
cation.
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Figure 3.11: Un-partitioned sample graph 3 after weighting and resource alloca-
tion.
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Figure 3.12: Partitioning of the sample graph 3 with GP algorithm, both con-
straints are met, constraints are : bandwidth = 25 and resources = 130.
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Figure 3.13: Partitioning of the sample graph 3 with METIS algorithm, resources
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sources = 130.
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5.3. Experimental results 39

Figure 5.1: Un-partitioned sample graph #1 before weighting and resource allocation.

K = 4

Algorithms
Total

Edge-Cuts

Total

Time(S)

Maximum

Resource

Allocation

Maximum

Local

bandwidth

METIS 58 0.02 172 20

GP 70 0.33 163 16

Table 5.1: Number of Nodes = 12, Number of Edges = 33, both constraints are violated in METIS and

in GP both constraints are met.
Table 3.1: Number of Nodes = 12, Number of Edges = 33, both constraints are

violated in METIS and in GP both constraints are met.

44 Chapter 5. Experiments and Results

K = 4

Algorithms
Total

Edge-Cuts

Total

Time(S)

Maximum

Resource

Allocation

Maximum

Local

bandwidth

METIS 77 0.02 137 25

GP 62 0.25 127 18

Table 5.2: Number of Nodes = 12, Number of Edges = 30, Resource is violated in METIS but bandwidth

is met and in GP both constraints are met.
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Figure 5.6: Un-partitioned sample graph #2 after weighting and resource allocation

Table 3.2: Number of Nodes = 12, Number of Edges = 30, resource is violated in
METIS but bandwidth is met and in GP both constraints are met.48 Chapter 5. Experiments and Results

K = 4

Algorithms
Total

Edge-Cuts

Total

Time(S)

Maximum

Resource

Allocation

Maximum

Local

bandwidth

METIS 90 0.02 78 38

GP 96 7.76 76 19

Table 5.3: Number of Nodes = 12, Number of Edges = 32, bandwidth is violated in METIS but resource

is met and in GP both constraints are met.
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Figure 5.10: Un-partitioned sample graph #3 after weighting and resource allocation

Table 3.3: Number of Nodes = 12, Number of Edges = 32, bandwidth is violated
in METIS but resource is met and in GP both constraints are met.
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CHAPTER4
A Review of The Polyhderal Analysis

Framework

IN order to more easily read through the rest of this thesis, a thor-
ough understanding of the background theoretical concepts is
required. In this chapter I reconsider the technologies, method-

ologies and concepts that are relevant to this work and that qualify
as state-of-the-art. In Section 4.1 the Polyhedral Model (PM) is pre-
sented, along with some use cases like how it is employed to provide
automatic information extraction from the input program. In Sec-
tion 4.4 I show the set of limitations imposed on the code to be an-
alyzed by Polyhedral Analysis (PA), while in Section 4.2 Streaming-
based Systems on Field Programmable Gate Arrays (FPGAs) are
introduced, since the proposed architecture is streaming-based as
well. Section 4.3 is instead dedicated to High Level Synthesis (HLS),
because it is the technology that in this work allows to connect the
PM with the generation of the architecture, and nonetheless substan-
tially ease the hardware design, also enabling automation. Finally,
in Section 4.5 focus is on Iterative Stencil Loops (ISLs), which are
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indeed the target of this entire work.

4.1 Introduction to Polyhedral Framework

In scientific and engineering applications, but in general in the
great part of computationally intensive programs, most of the ex-
ecution time is spent in nested loops. This implies that the ability
to perform loop nest restructuring towards optimization and paral-
lelization is mandatory, although undoubtedly non-trivial. Standard
compilers use in fact Intermediate Representations (IRs) such as syn-
tax trees, call trees, control-flow graphs which are simply not appropri-
ate to perform such a task, as the kind of abstraction of those tech-
niques inevitably hides certain properties and features of programs,
making it impossible to perform complex code transformations.

These limitations have created the need to develop techniques
specifically aimed at optimizing loop nests, to be used in place of
or in combination with standard compilers. A first attempt in this
direction has been made in the eighties [162, 214], motivated by the
need to map parallel computations onto systolic arrays [130]. It was
based on the work of Karp et al. [111] that proposed a mathemati-
cal model which mapped onto uniform recurrence equations, which
also inspired a series of fundamental works from Feautrier [79–83],
arrived in the late eighties as well and quickly followed by other
works related to the same topic, such as [22, 210, 211]. Those works
provided a robust mathematical framework for regular imperative
programs, and gave the basis to which is now known as the PM
(sometimes called Polytope Model). The proposed model rapidly evolved
and gained importance, as it allowed to map programs onto a math-
ematical representation, creating a solid link with algebra, as well
as Operations Research (OR), thus making possible to extend their
applicability also in the field of programs optimization. With the aid
of the Polyhedral Model, loop optimization has reached the point
in which a finely calibrated transformation can condense in a single
step the equivalent of a significant number of textbook loop trans-
formations [19, 99].

In the following section, a detailed overview of the polyhedral
framework is then provided, starting from the model, described in
section 4.1.2, and explaining what can be accomplished with such a
model, which is the topic of section 4.1.3.
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4.1.1 Motivating Examples

With the purpose of showing the PM usefulness, let us consider
this matrix multiplication algorithm as a motivating example:

for ( i = 0; i < ni ; i++)
for ( j = 0; j < nj ; j++)

for (k = 0; k < nk; ++k)
C[ i ] [ j ] += alpha * A[ i ] [k] * B[k][ j ] ;

This loop nest, as simple as it might seem, is indeed not opti-
mized at all. In fact, just by considering a simple memory system,
featuring only a single level of cache, it is obvious that the execu-
tion suffers a slow down due to cache misses, since every instance
of the statement requires in fact two concurrent reads, both from A
and B, resulting in no utilization of the cache. However, a simple
restructuring completely changes the situation:

for ( i = 0; i < Ni; i++)
for ( j = 0; j < Nj; j++)

for (k = 0; k < Nk; ++k)
C[ j ] [k] += alpha * A[ j ] [ i ] * B[ i ] [k] ;

Just by changing matrix indices, the execution is now optimal
with respect to data locality, since now a new cell of A is read only at
every new iteration of the outer loop, allowing the maximum data
reuse available.

Let us now consider the following code:

for ( i = 1; i < ni ; i++)
for ( j = 0; j < nj ; j++)

A[ i ] [ j ] = A[ i−1][ j ] + 1;

As it is, this loop cannot be parallelized among the outer loop.
The reason for this situation is the dependency between the point
(i, j) of the loop instance and the previously computed point (i −
1, j), that, due to the way in which the array is traversed, enforce a
dependency between instances among the outer loop.

However, there is a simple solution to this problem: by changing
the way in which the loop nest is executed, the dependency scheme
can be exploited to enable the parallelization of the outer loop.
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Table 4.1: On the left, the numbers show the traversing order of the original code.
The traversing order enforced after the transformation is instead shown on the
right. The array dependencies are represented with an arrow.

for ( j = 0; j < nj ; j++)
for ( i = 1; i < ni ; i++)

A[ i ] [ j ] = A[ i−1][ j ] + 1;

The loop nest can now be partitioned among different, parallel,
computing units.

As last example, consider the following loop nest:

for ( i = 1; i < ni ; i++){
A[ i ] += A[ i−1];
B[ i ] += B[ i−1];

}

The two statements are completely independent, hence, they could
in principle be computed separately. The code is however written in
a way that does not allow such optimization. Splitting the loop in
two solves the problem,

for ( i = 1; i < ni ; i++)
A[ i ] += A[ i−1];

for ( i = 1; i < ni ; i++)
B[ i ] += B[ i−1];

allowing now to execute the two loops in parallel.
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This is indeed exactly the kind of transformations that are en-
abled by the polyhedral framework.

4.1.2 Polyhedral Model

The PM has been proved to be a powerful tool for automatic opti-
mization and parallelization. In fact, at the price of certain regularity
conditions, this model can deliver very high standard in terms of ex-
ecution time, throughput, number of processors and communication
channels, memory requirements, and so on. It is indeed based on an
algebraic representation of programs, whose manipulation allows to
construct and search for complex sequences of optimizations.

This section precisely describes this model, giving a comprehen-
sive overview of all the building blocks.

Mathematical Background

In order to understand the following concepts, this section pro-
vides the key definitions for polyhedral theory, the mathematical
background on which the PM rests its foundations [154].

Definition 1. Convex Set. Given S a subset of Rn . S is convex iff,
∀µ, λ ∈ S and given c ∈ [0, 1]:

(1 − c).µ+ c.λ ∈ S
A set is convex if for every pair of points within the object, drawing a line
segment that joins the pair of points, each point on this segment is also in
the set.

Definition 2. Affine Function. A function f : Km → Kn is affine if there
exists a vector ~b ∈ Kn and a matrix A ∈ Km×n such that:

∀~x ∈ Kn, f(~x) = A~x+ ~b

Definition 3. Affine Spaces. A set of vectors is an affine space iff it is
closed under affine combinations.
A line in a vector space of any dimensionality is a one-dimensional affine
space.

Definition 4. Affine half-space. An affine half-space of Km (affine con-
straint) is defined as the set of points:

{~x ∈ Km| ~a.~x 6 ~b}

Definition 5. Affine hyperplane. An affine hyperplane is an m − 1 di-
mensional affine sub-space of anm dimensional space.
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An hyperplane divides the space into two half-spaces, the positive and
negative half-space. Each half-space can be represented by an affine in-
equality.

Definition 6. Polyhedron. A set S ∈ Km is a polyhedron if there exists
a system of a finite number of inequalities A~x 6 ~b such that:

P = {~x ∈ Km|A~x 6 ~b}
Equivalently, it can be defined as the intersection of finitely many half-
spaces. Hence the representation as above, where each inequality corre-
sponds to a face of the polyhedron.

Definition 7. Parametric Polyhedron. Given ~n the vector of symbolic
parameters, P is a parametric polyhedron if it is defined by:

P = {~x ∈ Km|A~x 6 B~n+ ~b}

Definition 8. Polytope. A polytope is a bounded polyhedron.

Definition 9. Integer Hull. The integer hull of a rational polyhedron P

is the largest set of integer points such that each of these points is in P.

Definition 10. Lattice. A subset L in Qn is a lattice if is generated by
integral combination of finitely many vectors: a1,a2, ...,an(ai ∈ Qn).

L=L(a1, ...,an) = {λ1a1 + ... + λnan|λi ∈ Z}
If the ai vectors have integer coordinates, L is an integer lattice.

Definition 11. Z-polyhedron. A Z-polyhedron is the intersection of a
polyhedron and an affine integral full dimensional lattice.

P ′ = Zn ∩ P

Static Affine Nested Loop Program

Let us start with the most generic definition for the PM, as it pro-
vides the conditions for given a program to be described in the PM.

Definition 12. Static Affine Nested Loop Program (SANLP) [138].
A SANLP consists of a set of statements and function calls, each possibly
enclosed in loops and/or guarded by conditions. The loops do not have to
be perfectly nested. All lower and upper bounds of the loops as well as all
expressions in conditions and array accesses have to be affine functions of
enclosing loop iterators and static parameters. The parameters are sym-
bolic constants, so their values can not change during the execution of the
program. Data communication between function calls must be explicit.
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Static Control Parts

The next definition that comes after SANLP, moving to a finer
granularity, is the one of Static Control Parts (SCoPs). A SCoP is a
subclass of general loop nests that can be represented in the polyhe-
dral model [38].

Definition 13. Static Control Part. A SCoP is a maximal set of consec-
utive instructions such that:

• the control structures are only for loops or if conditionals

• loop bounds and conditionals are affine functions of the surrounding
loop iterators and the global parameters ( values unknown at compi-
lation time, but constant).

Even if the definition of SCoPs may seem restrictive, a pre-processing
stage can extend its applicability.

As said, SCoPs are a set of statements. A polyhedral statement is
the atomic dowel of polyhedral representation, and can be defined
as:

Definition 14. Polyhedral Statement. A polyhedral statement is a
program instruction that:

• is not an if conditional statement with an affine condition

• is not a for loop statement with affine loop bounds

• has only affine subscript expressions for array accesses

• does not generate control-flow effects

The resulting statements in the polyhedral representation may
differ from those in the input source code, because the compiler may
change the internal representation.

Iteration Domain

Iteration Domains capture the dynamic instances of all statements
– i.e. all possible values of surrounding loop iterators – through a set
of affine inequalities. In order to get to the definition in a rigorous
manner, let us first of all define what an iteration vector is:
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Definition 15. Iteration Vector. For a polyhedral statement, the itera-
tion vector of a multi-level loop nest over a m-dimensional grid is a vector
of iteration variables,~i = (i0, i1, ..., im−1)

T , where i0, ..., im−1 are the iter-
ation variables from outermost to innermost loop.

Starting from the iteration vector, the Iteration Domain can be
defined as:

Definition 16. Iteration Domain [81]. The Iteration Domain (ID) D ⊆
Zm is the set of iteration vectors of the loop nest, and is expressed by a set
of linear inequalities D = {~i |P~i > ~b}

Each integral point inside this polyhedron corresponds to ex-
actly one execution of a statement, and its coordinates in the domain
matches the values of the loop iterators at the execution of this in-
stance. This model let the compiler manipulate statement execution
and iteration ordering at the most precise level.

Table 4.2: ID Example.

Notice that, to model IDs whose size are known only symboli-
cally at compile-time, parametric polyhedra are used.

Since the definitions of iteration vector and ID have just been in-
troduced, the notion of lexicographic order can now be provided,
as it will be useful to effectively model both data dependencies and
schedules.

Definition 17. Lexicografic Order [81]. Lexicographic order relation
�l of two iteration vectors~i and~j is defined as:

~i �l
~j⇔ (i0 > j0)∨ (i0 = j0 ∧ i1 > j1)∨ (i0 = j0 ∧ i1 = j1 ∧ i2 > j2)∨ ...

∨(i0 = j0 ∧ ... ∧ im−2 = jm−2 ∧ im−1 > jm−1)
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Data dependencies

The modeling of data dependencies is crucial for the effective-
ness of the PM, since not all program transformations preserve the
semantics, and the semantic is automatically preserved if the depen-
dencies are preserved. Here, some important definitions for data
dependency analysis and representation are given.
Firstly, an essential definition to model the dependencies in the PM
is the subscript function, as well as the notion of image and preimage.

Definition 18. Subscript Function [36]. Given the set of array AP of a
program P, a reference to an array B ∈ AP in a statement S ∈ SP is written
〈B, f〉, where f is the subscript function. If f is affine it can be written as
f(~x) = F~x+ ~a where F is the subscript matrix, ~a is a constant vector.

Table 4.3: Subscript Function Example. The three subscript functions are relative
to the three array accesses for s, a and x.

Definition 19. Image. The image of a polyhedron P ∈ Zn by an affine
function f:Zn → Zm is a Z-polyhedron P ′:

P ′ = { f(~x) ∈ Zm|~x ∈ P}

Definition 20. Preimage. The preimage of a polyhedron P ∈ Zn by an
affine function f:Zn → Zm is a Z-polyhedron P ′:

P ′ = {~x ∈ Zn|f(~x) ∈ P}

The image of a polyhedron by an affine invertible function is a
Z-polyhedron. The image of a polyhedron by a subscript function
fA in an ID DS is the set of cell of A accessed from the statement S.

Thanks to those notion, the data domain (or data space) of a given
array reference can be easily modeled. In fact, it is enough to com-
pute the image of the ID of the statement by the reference subscript
function.
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Within the context of PM dependencies analysis, there is another
important definition that must be provided, as it can be useful to
check for the legality of a given transformation, but it can be em-
ployed for a whole lot of other purposes. This definition is the so
called data distance vector, which comes together with the definitions
of lexicographically non-negative distance vector and as an extension the
legality condition for a given distance vector.

Definition 21. Data Distance Vector. Consider two subscript func-
tions fRA and fSA to the same array A of dimension n. Let ν and σ be two
iterations of the innermost loop. The data distance vector is defined as an
n-dimensional vector:

δ(ν,σ)fRAfSA
= fRA(ν) − fSA(σ)

Definition 22. Lexicographically non-negative Distance Vector. A
distance vector v is lexicographically non-negative when the left-most entry
in v is positive or all elements of v are zero.

Definition 23. Legal Distance Vector. A distance vector is legal when
it is lexicographically non-negative (assuming that indices increase).

In order to easily define the notion of polyhedral dependency, there
is first the need to provide some introductory definitions, the first
being the Bernstein conditions.

Definition 24. Bernstein Conditions [41]. Given two references, there
exists a dependency between them if the three following conditions hold:

• they reference the same memory location;

• one of this access is a write;

• the two associated statements are executed;

Let us consider two statement instances, S0, S1, with S0 occurring
before S1, there are three categories of dependencies that can be iden-
tified [105]:

• Read After Write (RAW), S1 reads what is written by S0. If the
dependency is not respected, S1 incorrectly gets the old value.

• Write After Read (WAR), S1 write a destination after reading
from S0. If the dependency is not respected, S0 incorrectly gets
the new value.
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• Write After Write (WAW), S1 write to a memory location after
S0. If the dependency is not respected, the writes end up being
performed in the wrong order, leaving the value written by S0
rather than the value written by S1 in the destination.

As already stated, to preserve the semantic of the program, in-
stances containing dependent references should not be executed in
a different order. [154] classifies the dependency relation into three
kinds:

• Uniform dependencies: the distance between dependent iter-
ation remains constant

• Non-Uniform dependencies: during the execution the distance
between dependent iterations varies

• Parametric dependencies: the distance between two depen-
dent relations is expressed regarding to at least one parameter

Finally, let us define when two statements are said to be in depen-
dence in the PM, leveraging the previously given definitions:

Definition 25. Dependency of statement instances. A statement S
depends on a statement R (R → S), if there exists an operation S(~xS) and
R(~xR) and a memory location m such that:

• S(~xS) and R(~xR) refer to the same memory location m, and at least
one of them writes to that location

• xR and xS belong to the ID of R and S

• in the original sequential order, S(~xS) is executed after R(~xR).

To effectively model dependencies between statements, a Data
Dependency Graph can be employed.

Definition 26. Data Dependency Graph. A Data Dependency Graph
(DDG)G = (V ,E) is a directed multi-graph with each vertex representing
a statement. An edge e ∈ E, from R to S represents a dependency between
the source and target, due to a conflict access in R and S.

Another useful representation in polyhedral theory is the depen-
dence polyhedron, used in combination with the DDG. The depen-
dency polyhedron provides the relation between the instances of the
statements S and R. It is possible to obtain this kind of information
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because there exists an affine relation between the iterations and the
accessed data for regular programs, that can be obtained thanks to
the previously defined subscript function. Before providing the def-
inition of the dependence polyhedron, there is first the need to intro-
duce the involved elements. First of all, the ID (being a set of affine
inequalities) of S and R can be described as AS~xS + cS > 0, and
AR~xR + cR > 0, where ~xS and ~xR are the iteration vectors of S and
R. A dependence between S and Rmeans that they refer to the same
memory location, which implies that the two subscript functions are
equal, hence FS~xS + aS = FR~xR + aR (both expressed as in defini-
tion 18). There is also a precedence order between S and R, at the
given dependence level, i.e. the common loop depth l in which the de-
pendency takes place. For each dependence level l, the precedence
constraints are:

• the equality of the loop index variables at any depth lesser to l:
xR,i = xS,i ∀i < l

• S is executed after R at the common depth l:
xR,l < xS,l

If S and R does not share any loop, there is no additional constraint
and the dependence only exist if S is syntactically after R. These
constraints can be expressed using linear inequalities, i.e. Pl,S~xS −
Pl,R~xR + b > 0.

Definition 27. Dependence Polyhedron. The dependence polyhedron
DR,S,fR,fS.l for R→S at a given level l and for a given pair of references fR,
fS is described as:

DR,S,fR,fS.l : DR,S

(
~xR

~xS

)
+ ~dR,S =


FR −FS

AR 0
0 AS

PR −PS


(

~xR

~xS

)
+


aR − aS

cR

cS

b

 =0
>~0

Given all the definitions above, the Polyhedral Model can be fi-
nally defined:

Definition 28. Polyhedral Model [202]. The polyhedral model of a
sequential program consists of a list of statements represented by:

• an identifier;
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Table 4.4: An example of a dependence polyhedron. In this example the polyhe-
dron over the iteration vectors (one for the first statement, two for the second)
and the scalar part are condensed in a single matrix (notice the 1 after the three
iteration vectors). On the right there is a visual representation of the depen-
dencies among the instances of the two statements.

• a dimension di;

• an ID;

• a list af accesses;

• a location;

A subscript function and a type (read or write) are associated to each array.

Schedules

The ID does not describe the order in which each statement in-
stance has to be executed with respect to other instances. A schedul-
ing function specifies a virtual timestamp for each instance of a cor-
responding statement, providing an order relation between state-
ment instances. Hence, statement instances will be executed accord-
ing to the increasing order of the timestamp. If two instances have
the same timestamp can run in parallel.

Table 4.5: A simple schedule example. In this picture, the statement on the left
has an identity schedule, as the statement instances are trivially the points
(i, j) within the statement ID.
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Definition 29. Affine Schedule [153]. Given a statement S, a p-dimensional
affine schedule ΘS is an affine form on the outer loop iterators ~xS and the
global parameters ~n.

ΘS(~xS) = TS

 ~xS

~n

1

 , TS ∈ Kp×dim(~xS)+dim(~n)+1

A schedule assigns a timestamp to each executed instance of a
statement. A schedule can be:

• One-dimensional, if T is a vector;

• Multidimensional, if T is a matrix.

A one-dimensional schedule express the program as a single sequen-
tial loop, while a multidimensional schedule expresses the program
as one or more nested sequential loops [157].

There are however schedules which by construction are not legal,
i.e. they enforce an execution order which violates the dependencies.
The following definitions are essential to model this condition in the
PM.

Definition 30. Precedence Condition. Given ΘR a schedule for the
instance of R, ΘS a schedule for the instances of S. ΘR and ΘS are le-
gal schedules if ∀〈~xR,~xS〉 ∈ DR,S,fR,fS.l (i.e. for each instance of R and S
in dependence, as specified in the corresponding dependence polyhedron
DR,S,fR,fS.l):

ΘR(~xR) ≺ ΘS(~xS)

Definition 31. Legal Shedule. A scheduleΘ, is legal if the precedence
condition holds.

Lemma 1. Affine form of Farkas Lemma. Let D be a nonempty polyhe-
dron defined by A~x+~b > ~0. Then any affine function f(~x) is non-negative
everywhere in D iff it is a positive affine combination:

f(~x) = λ0 +~λT (A~x+ ~b) , with λ0 > 0 and~λ > ~0
λ0 and~λT are called the Farkas multipliers.

Tha Farkas lemma allows to translate the precedence constraints
into an affine equivalent, i.e. an affine function. In order to satisfy
the dependency R→ S (definition 25), a schedule must satisfy [157]:

ΘR(~xR) < ΘS(~xS)
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for each point of the dependence polyhedron DR,S,fR,fS.l. Hence:
∆R,S = ΘS(~xS) −ΘR(~xR) − 1

must be non-negative everywhere in DR,S,fR,fS.l:
∆R,S > 0

The set of legal schedules satisfying the dependency R→ S is given
by the relation:

∆R,S = λ0 +~λT
(
DR,S

(
~xR

~xS

)
+ ~dR,S

)
> 0

where DR,S is the constraint matrix representing the dependence
polyhedron DR,S,fR,fS.l over ~xR and ~xS, and ~dR,S is the scalar part of
these constraints, as described in definition 27.

4.1.3 Polyhedral Transformations

So far, the PM has been described, providing the mathematical
toolset which allows to design sophisticated optimization heuristics
by combining analysis power, transformation expressiveness and
flexibility. In this section instead, the framework built on top of the
PM is illustrated, in all of its phases: analysis/representation, transfor-
mations and as last step code generation.

Static Control Parts Extraction

The first task is obviously SCoPs extraction, as it allows the sub-
sequent manipulations done in the successive phases. Briefly, it can
be summarized by the following steps [37]:

1. Information Gathering: it consists of traversing the syntax tree
of a given function, storing during this sweep loop counters,
bounds and strides, conditionals, array references, and parameters.

2. Affine Loops Recognition: Once the collecting phase is done,
identified loops are inspected in order to select the static control
ones. First of all, bounds expressions are checked in order to
extract only those with affine conditions. Then, conditionals are
also checked to further refine the extraction, since they must
be affine expressions of parameters and loop counters. Finally,
only array references whose subscript function is also an affine
expression of parameters and loop counters are selected.

3. SCoPs Building: In this phase the syntax tree is traversed once
again, but this time aided by the previous extracted informa-
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tion, and only for the part containing the loops remained af-
ter the aforementioned refinements, in order to build the set of
SCoPs. First, a new SCoP is created; then, for each static opera-
tional or control node in the loop body:

• if it is a loop, this loop is added to the SCoP;
• if it is a conditional, then it is added with its branches to

the SCoP;
• if it is not a conditional or a loop node, then it is added to

the SCoP;
• otherwise, close the current SCoP and create a new one;
• drop the current SCoP if it eventually does not contain any

loop

4. Global Parameters Identification: Finally, for each identified
SCoP, iterate over loop bounds, conditionals and array refer-
ences to collect global parameters.

Data Dependency Analysis

Once a function has been translated into the corresponding set
of SCoPs, then data dependency analysis takes place. The objec-
tive of this phase is to compute the set of statement instances which
are in dependence relation. Even though different approaches to
this task have been proposed through the years, such as for instance
the Omega Test [160], the widely accepted technique is that of Data
Flow Analysis proposed by Feautrier in [80]. Starting from this work,
the state-of-art-technique aims at building a Polyhedral Dependency
Graph (PDG), consisting of a DDG in which, according to definition
26, nodes are the statements and edges are dependencies between
them, and, for each edge, a corresponding dependence polyhedron,
described in definition27. The procedure to build the DDG can be
characterized by Algorithm 2

Then, by traversing the obtained DDG, the dependence polyhe-
dra are built, as shown in Algorithm 3.

Note that the two operations can also be done concurrently, since
the dependence polyhedra can be constructed right after each dis-
covery of a new dependency (edge), resulting in a single algorithm.
It must be also noticed that, whenever some types of dependencies
are not needed, those dependencies can be simply not checked. In
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Algorithm 2: DDG Construction
Create a graph in which every node is a statement
for all pair of nodes R, S do

for all array references fR, fS do
if fR and fS are on the same array then

Compute the set Z of RAW,W of WAR, X of WAW dependencies
if R 6= 0 orW 6= 0 or X 6= 0 then

Add an edge between node i and j
Mark the edge with the array reference
Mark the edge with the corresponding dependency type

end if
end if

end for
end for

Algorithm 3: Dependence Polyhedra Construction
for all pair of nodes R, S do

for all edge between those nodes eR,S do
if R and S does not share any loop then
min_depth← 0

else
min_depth← 1

end if
for all level l frommin_depth to number_of_common_loops do

Build the Dependence Polyhedron DR,S,fR,fS.l
end for

end for
end for
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the case in which data reuse is the major concern, then also Read Af-
ter Read (RAR) dependencies can be checked [46], although they
don’t actually belong to the canonical data dependencies catego-
rization. Furthermore, redundant edges between nodes can be con-
densed obtaining what is called a Polyhedral Reduced Dependency
Graph (PRDG).

Program Transformations

In a nutshell, the goal of a transformation is to modify the origi-
nal execution order of the operations, i.e. the original schedule. At this
point, OR comes into play, since transformations are always done
targeting a specific optimization (or even more than one, in some
cases) such as latency, parallelism, data reuse, and so on.

Obviously, in order not to alter the program’s semantic, i.e. so as
not to impair the correctness, a legal schedule must be found, i.e. the
schedule which optimizes the given objective function must be se-
lected within the legal transformation space [156, 157]. Hence, finding
a good scheduling algorithm is basically a two-step approach [154]:
the first consisting of finding the solution set of all legal affine sched-
ules, the second consisting of finding an Integer Linear Program-
ming (ILP) formulation for the objective function. After those two
steps, an ILP solver can be used to find the optimal legal schedule.

The loop transformations achievable thanks to the PM are quite a
few. Below, an overview of them is provided, and for some of them,
the description comes along with a simple example.

Loop Reversal It basically reverses the order in which values are
assigned to the index variable, changing the direction in which the
loop traverses its iteration range. This kind of transformation can
help to give space to further optimizations, previously not possible.

for ( i = 1; i < ni ; i++)
for ( j = 1; j < nj ; j++)

A[ i ] [ j ] += A[ i−1][ j ] + 1;

Listing 4.1: Before

for ( i = 1; i < ni ; i++)
for ( j = nj − 1; j >= 1; j−−)

A[ i ] [ j ] += A[ i−1][ j ] + 1;

Listing 4.2: After

Loop Interchange Also known as loop permutation, it consists of ex-
changing the position of two loops in a loop nest. It is mainly used
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to improve cache effectiveness, modifying the behavior of accesses
to arrays. Also, it can be used to control the granularity of the work
in nested loops, interchanging for instance a parallel loop with a
non parallel one, thus modifying the amount of work per parallel
instance.
for ( i = 1; i < ni ; i++)

for ( j = 1; j < nj ; j++)
B[ i ] += A[ i ] [ j ] ;

Listing 4.3: Before

for ( j = 1; j < nj ; j++)
for ( i = 1; i < ni ; i++)

B[ i ] += A[ i ] [ j ] ;

Listing 4.4: After

This technique is however only legal if the distance vectors of the
loop nest remains lexicographically positive after the interchange.

Loop Shifting It is a technique where operations inside a loop body
are reordered. Obviously, it cannot be done whenever this reorder-
ing alters the dependencies. This transformation is sometimes re-
ferred also as loop restructuring.

Loop Fusion It consists of combining two loop bodies, and is also
knows as jamming. The application of this transformation is safe
only if no forward dependency between the two fused loops become
a backward loop carried dependency. It is used in order to enhance
data reuse, reduce loop overhead or eliminate synchronization be-
tween parallel loops.

for ( i = 1; i < ni ; i++)
A[ i ] = B[ i ] ;

for ( i = 1; i < ni ; i++)
C[ i ] = B[ i ] * A[ i ] ;

Listing 4.5: Before

for ( i = 1; i < ni ; i++){
A[ i ] = B[ i ] ;
C[ i ] = B[ i ] * A[ i ] ;

}

Listing 4.6: After

Loop Distribution also called fission, this transformation is basically
the inverse of loop fusion. It breaks a single loop into multiple loops,
iterating over the same index range. It can be done only if split-
ting the loop body does not alter dependencies between iteration
instances. Its application can enable other transformations, and also
reduce resource requirements, as well as allow partial paralleliza-
tion.
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for ( i = 1; i < ni ; i++){
A[ i ] = B[ i ] ;
C[ i ] = B[ i ] * A[ i ] ;

}

Listing 4.7: Before

for ( i = 1; i < ni ; i++)
A[ i ] = B[ i ] ;

for ( i = 1; i < ni ; i++)
C[ i ] = B[ i ] * A[ i ] ;

Listing 4.8: After

Loop Peeling This transformation consists of extracting one itera-
tion of a given loop. It is done essentially to enable other kind of
optimizations

Index-set Splitting Similar to peeling, but in this case the index set
of the loop is splitted, so instead of extracting a single iteration, now
the iteration space is divided among different loop instances.

for ( i = 1; i < ni ; i++)
C[ i ] = B[ i ] * A[ i ] ;

Listing 4.9: Before

for ( i = 1; i < ni/2; i++)
C[ i ] = B[ i ] * A[ i ] ;

for ( i = ni/2; i < ni ; i++)
C[ i ] = B[ i ] * A[ i ] ;

Listing 4.10: After

Loop Skewing It takes a nested loop iterating over a multidimen-
sional array, in which each iteration instance of the inner loop de-
pends on previous iterations, and rearranges its array accesses so
that the only dependencies are between iterations of the outer loop.
Technically speaking, the transformation makes the bounds of the
inner loop depend on the outer loop counter, enabling inner loop
parallelization.

for ( i = 1; i < ni ; i++)
for ( j = 2; j < nj ; j++)

A[ i , j ] = A[ i−1][ j ] + A[ i ] [ j −1];

Listing 4.11: Before

for ( i = 1; i < ni ; i++)
for ( j = ni + 2; j < i + ni ; j++)

A[ i ] [ j ] = A[ i−1][ j ] +
A[ i ] [ j −1];

Listing 4.12: After

Tiling Sometimes known as strip mine and interchange or loop block-
ing, this transformation is used to enable coarse grain parallelism or
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(a) Original schedule (b) After skewing

Table 4.6: Loop Skewing Example. The ID is “skewed” to allow inner loop paral-
lelization.

enhance locality by making blocks whose data is sized to fit in the
cache. What it does is partition the iteration space into tiles, whose
size can be fixed or parametric [216]. A tile can be of three types:

• Full Tile: all points in the tile are valid iterations;

• Partial Tile: only a subset of the points are valid iterations;

• Empty Tile: no points are indeed valid iterations;

Obviously, an important task when doing code generation is to en-
sure that empty tiles are actually not visited, effectively reducing
control overhead.

for ( i = 0; i < N ; i = i + 1)
for ( j = 0; j < N ; j = j + 1)
for (k = 0; k < N ; k = k + 1)
C[ i ] [ j ] = beta * C[ i ] [ j ] + alpha *

A[ i ] [k] * B[k][ j ] ;

Listing 4.13: Before

for ( j j = 0; j j < N; j j = j j + Bj )
for (kk = 0; kk < N ; kk = kk + Bk )
for ( i = 0; i < N ; i = i + 1)
for ( j = j j ; j < min( j j +Bj ,N) ; j = j

+1)
for (k = kk; k < min(kk + Bk , N

) ; k = k + 1)
C[ i ] [ j ] = beta * C[ i ] [ j ] + alpha

* A[ i ] [k] * B[k][ j ] ;

Listing 4.14: After
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Table 4.7: Loop Tiling Example. The ID is partitioned into the so called “tiles”.

Tiling Hyperplane Method Implemented in the state of art frame-
work known as PLuTo, the tiling hyperplane method [46] is aimed
at making the loop tilable (i.e. making tiling applicable) by comput-
ing a set of transformations, driven by an integer linear optimiza-
tion formulation, done in order to minimize synchronizations and
maximize locality. The computed transformations must ensure the
following condition to be legal:

Lemma 2. Legality of tiling multiple domains with affine dependen-
cies. Let φsi be a one-dimensional affine transform ( i.e. schedule ) for
statement Si.
For {φs1 ,φs2 , ...,φsk} to be a legal (statement-wise) tiling hyperplane, the
following should hold for each edge e ∈ E of the PDG:

φsj(~t) − φsi(~s) > 0, 〈~s,~t〉 ∈ Pe

where Pe is the dependence polyhedron associated to e.

Code Generation

Code generation is the last phase of program optimization through
the PM. This is indeed a critical step in the polyhedral framework,
simply because the effective optimization really depends on the tar-
get code quality. As the name suggests, it consists of regenerating
the code in a given target language from the polyhedral represen-
tation obtained after the transformation step. This stage basically
generates a scanning code [161] of the IDs of each statement, with the
lexicographic order imposed by the current schedule. This scanning
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code is an AST-based IR which is then quite easily translated into a
target language, typically imperative, such as C.

In the early years of the PM, code generation was considered the
bottleneck of the entire framework, due to the lack of scalability of
the generation algorithms [153], mainly because of bad control man-
agement, which produced redundant conditions or complex loop
bounds, as well as rapid code size explosion. This problem has been
overtaken only recently, thanks to the work from Bastoul [34, 35],
which proposed an extended version of the algorithm developed by
Quilleré et al. [161]. The proposed technique from Quilleré et al.,
in which the essential part was a recursive generation of the scan-
ning code (the Abstract Syntax Tree (AST)), was the first algorithm
able to eliminate redundant control in the target code, but not able
to deal with predicates and their impact on the control-flow, result-
ing easily in unacceptable code size. The later version from Bastoul
was instead able to effectively reduce code size and processing time.
Lately, Bastoul’s work has been further improved [200], reaching the
ability to scale up to thousands of statements.

4.2 Streaming Systems in FPGAs

Early years FPGAs have been primarily used to implement a
small amount of glue logic between other chips, simply because they
were not mature enough to handle complex computations and large
problem sizes. However, recent trends shows that FPGAs are be-
coming increasingly powerful, more and more aligned with Application-
Specific Integrated Circuits (ASICs) performance, but also compara-
ble to other computing devices, thanks to an improved production
process, a reduced power consumption, an increased speed, a larger
amount of resources, in addition to an increasing possibility of on-
the-fly re-configuration. This proves that FPGAs can now be consid-
ered a computing platform on their own, able to deliver very high
performance even for complex problems [186].

It is however obvious that, due to their completely different ar-
chitecture, FPGAs cannot be used as replacement of the other avail-
able computing devices. Instead, ad-hoc solutions must be found
in order to effectively exploit their potentialities, while abstracting
implementation details to facilitate scaling.

Streaming-based systems are a perfect example in this sense, as
they embody precisely the distributed nature of the FPGAs. The
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flexible granularity of those devices, in combination with memory
elements distributed through the entire fabric, can easily deliver high
quality results when used for such a purpose, granting high internal
communication bandwidth while minimizing contention between
elements.

Streaming-based architectures found their first applications in
media processing [204], a type of computation well suited to be im-
plemented in a streaming fashion, for the following reasons:

• The information, at least in an uncompresed form, is stored in
multidimensional arrays;

• There is an enormous amount of information involved;

• Many of these algorithms do not need simultaneous access to
the entire data array, as indeed processing usally operates on
bounded regions (few frames, a single frame, or even a portion
of a frame)

• The data access pattern is typically fixed.

However, due to the nature of certain regular computations, which
enjoy the above properties as well, lately streaming-based systems
have also been employed for a whole lot of other purposes, espe-
cially in the High Performance Computing (HPC) field.

Below, the working principles of a generic FPGA-based stream-
ing architecture are explained.

4.2.1 Streaming Architectures

A stream-based processing system can be viewed as a Multiple
Instruction Single Data (MISD) architecture [204], although the in-
dividual processing elements may themselves be SISD, SIMD, or
MIMD in nature. It tends to be organized in a systolic structure, in
which neighbours communicate directly through dedicated chan-
nels, implemented as FIFOs, and the computation is performed as
the data streams flow through the corresponding units.

However, since storage capacity of FPGAs is relatively low with
respect to the problem size of real applications, those architectures
usually rely on external memory systems, employing specific logic
demanded for communication with those systems, such as Direct
Memory Accesses (DMAs).
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Table 4.8: Streaming Computing: A General Picture.

Table 4.9: Generic Streaming Architecture.
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For these architectures, the memory interface is the key part of
the entire system. In fact, in order to provide data at a sufficient
rate, the input arrays are linearized into a mono-dimensional stream,
and partitioned into smaller sub-blocks, following the array access
patterns. This kind of explicit management of the memory, although
it requires an additional effort with respect to traditional memory
systems, avoids completely resource contention, allowing multiple
concurrent accesses. Such an arrangment of the memory interface
is able to deliver very large bandwidth towards the computational
units, at a cost of increased design complexity.

In summary, when translating a problem specification into the
corresponding streaming architecture, there are two major steps:

• For the computaional part, instructions are mapped into pro-
cessing units

• Regarding memory, it requires explicit management, as it is
first splitted following data access patterns, and then organized
as a chain of FIFO buffers, in order to break the stream allowing
multiple concurrent accesses.

This can be easily represented as a graph, with computational nodes
and memory blocks linked together by streams, implemented as ded-
icated channels (i.e. FIFOs), as previously stated.

4.3 High Level Synthesis

A higher level of abstraction, beyond Register-Transfer Level (RTL),
is increasingly important and unavoidable due to the growing of
System-on-Chip (SoC) design complexity. The latest generation of
HLS tools offers: different languages coverage, platform-based mod-
eling and a domain-specific approach [64].
The abstraction level used by the early generation of commercial
HLS systems was partially timed, and because of that they were not
widely adopted, since neither languages nor the partially timed ab-
straction were well suited to model behavior at high level. The fol-
lowing generation provided synthesis of circuits starting from high
level languages, e.g. C-code specifications. This, with other techni-
cal advances, enabled their industrial usage. Nowadays there is a
growing demand for high-quality HLS solutions; more and more
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functionality can be integrated on a single chip, but this involves in-
creasing the number of design teams and design time. Lately they
are constantly improving and the industry is now starting to adopt
them into their design flow [1, 50, 60, 88, 132].

4.3.1 What is HLS?

High Level Synthesis is an automated design process that inter-
prets an algorithmic description of a desired behavior and creates
digital hardware that implements that behavior [65]. The synthe-
sis starts from an high-level specification of the problem, where be-
haviour is decoupled from timing. The input specification language
is analyzed, first Resource Allocation is done, that is the specification
of how many and which type of operator and memory elements are
required. Then the Scheduling assigns each operation to a time slot
(clock cycle). During Resource Binding, operations and data element
are bound to specific operators and memory elements. Also the in-
terfaces are generated, consisting of data and control signal, between
periphery and circuits. The result is an RTL design, which is in turn
synthesized to the gate level by the use of a logic synthesis tool. An
HLS tool is characterized according to different criteria:

• Input language: a designer would have the possibility to
specify the algorithm in a high-level language rather than an
hardware oriented language. It is obvious that some restriction
must be applied on the high-level language, but they should
not cause excessive difficulty in expressing a certain behaviour.

• Ease of use: a clear and complete documentation must be pro-
vided to flat the learning curve. Also a well designed graphic
user interface (GUI) can simplify the design.

• Data Type: In hardware the primitive data type is a single bit.
Support for complex data types is usually limited to integers,
so additional data types ease the transition from algorithm to
RTL.

• Design Exploration: the tools evaluate different architectures
and choose the one that fits the design specifications.

• Verification: this phase can be speeded up if a tool gener-
ates testbench together with the design, and integrating the
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source code (the reference) and the generated design into one
testbench.

• Metrics: the RTL design generated must have the information
about latency, the estimated clock rate and resource usage. An
HLS tool can process different RTL designs exploiting Domain
Space Exploration (DSE).

4.3.2 Advantages

The synthesis can be optimized taking into account performance,
power, and cost requirements of a particular system. Design ab-
straction is one of the most effective methods for controlling com-
plexity and improving design productivity. Adopting an HLS flow,
fewer lines of code are written, this reduces mistakes and saves time.
A RTL implementation has a fixed microarchitecture and protocol,
while an HLS code can be retargeted to different technologies and
requirements, so it can be reused in other designs. More and more
accelerators are included in a System-on-Chip. HLS is particularly
appropiate to build the architecture in support of this accelerators.

When targeting FPGAs, designers have even more advantages in
adopting HLS:

• Modern FPGAs have many pre-fabricated Intellectual Property
(IP) components embedded; HLS tools can apply a platform-
based design methodology, taking into account these compo-
nents.

• HLS significantly reduces the design time, or achieve quality of
results comparable to hand-written RTL, putting the performance-
power trade-off in the hands of the designers.

• Thanks to the recent advances in FPGAs, many HPC applica-
tions can be accelerated on a reconfigurable computing plat-
form. The software developers do not write in RTL, so ithighly
automated synthesis flow from C/C++ to FPGA is mandatory.

4.3.3 Evolution

As the design complexity of integrated circuits grows, it arises
the need to generate circuit implementations from high-level behav-
ioral specifications. The first HLS tools targeted ASICs design, and

98



i
i

“phdthesis” — 2015/12/14 — 9:35 — page 99 — #115 i
i

i
i

i
i

4.3. High Level Synthesis

is CMU-DA [205], developed at Carniege Mellon University in the
1970s, where the design is specified using an Instruction Set Proces-
sor Specification (ISPS) language, and then translated into an inter-
mediate data-flow representation, before producing RTL. The tool
included code-transformation techniques, hierarchical design and
included a simulator of the original ISPS language.

During the subsequent years other tools were developed, most of
them were academic projects. These tools typically decompose the
synthesis process into steps, such as register binding, scheduling, dat-
apath allocation. Different algorithms were developed to solve each
phase. Until 2000 the tools often used custom languages for design
specification, and because of the RTL synthesis tools were not ma-
ture, the HLS tools were not widely accepted.

Different reasons have influenced the adoption and guided the
evolution of early HLS tools:

• They utilized an intermediate language as input, instead of
a high-level language; this implied a learning curve for soft-
ware/hardware developers. Even when the tools started to in-
clude C language, they did not accept more than a language,
complicating the software/hardware co-design or simulation.

• The specification was tool-dependent so the produced imple-
mentation was unlikely to be portable.

• The HLS tools were not able to meet timing/power require-
ments in real life design, because the algorithms focused on
reducing the number of functional units, and they did not take
into account the IP blocks on a specific platform such as DSP
and Block RAM (BRAM).

• The tools were born when the design complexity was accept-
able to be handled without HLS. So there was not the necessity
to spend time learning a new unproven design methodology.

A breakthrough was made when the tools focused on C-like lan-
guages to capture design intent. In this way the tools are more ac-
cessible to the system designer, and facilitate software/hardware co-
design and co-verification. However, the C-based languages are crit-
icized to be only suitable for describing sequential software that run
on a Central Processing Unit (CPU). In particular C/C++ has the
following limitations from the hardware point of view:
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• does not include constructs to specify accuracy, timing, concur-
rency, synchronization etc.,

• has complex language constructs, such as recursion, that lead
to difficulties in synthesis.

To fill the gap between C/C++ and HDL the tools have included:
hardware-oriented language extensions, libraries (SystemC [17]), com-
piler directives and restrictions/interdiction of dynamic construct.
Hardware and software co-simulation can be done without rewrit-
ing the code, if pragmas and directives are used. Doing so, s stan-
dard C/C++ compiler can compile the code bypassing the pragmas.

Many HLS tools nowadays target FPGA platforms; improvements
made on these platforms, make them attractive for many applica-
tions. Some of the tools focus on a specific application domain, such
as Digital Signal Processor (DSP) or floating-point scientific comput-
ing applications.

4.4 Application Domain

The class of problems I am targeting is that of scientific workloads.
In fact, these algorithms can be easily written as:

• Static

• Pure

• Affine

imperatives codes.
I focus on this kind of workloads because all of the information

needed are known at compile time. All the transformations on the
source code can thus be done only analyzing the code statically. As
most scientific workloads share these characteristics, we are able to
analyze them more efficiently and, as we will see later, effectively
and automatically parallelize the computation.

Now I describe how and when a code is static, pure and affine.

4.4.1 Staticness

Given a C code, it’s possible todefine it static if:

• All loop bounds are known at compile time
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• There are no data dependent conditional statements

Algorithm 4: Example of a static code

1: define M 10

2: define N 10

3: for i=1 to N do
4: for j=i to M do
5: if j <= 2 then
6: b[j] = Func()
7: end if
8: end for
9: end for

4.4.2 Affinity

Given a code we define it affine if accesses to arrays happen us-
ing indices, constants or linear combinations of the indices of the
enclosing loops. For example, Code 4 is also affine since data are
also accessed linearly using j alone. An example of an affine but not
static code is:

Algorithm 5: Example of an affine non static code

1: define M 10

2: define N 10

3: for i=1 to N do
4: for j=i to M do
5: if j <= a[i] then
6: b[i*2][j+3*i] = Func()
7: end if
8: end for
9: end for

Note: in line 5 the if-statement depends on a data value, breaking
the second condition for staticness. Each index in code 5 is a linear
combination of enclosing indices and constants.

101



i
i

“phdthesis” — 2015/12/14 — 9:35 — page 102 — #118 i
i

i
i

i
i

Chapter 4. A Review of The Polyhderal Analysis Framework

4.4.3 Pureness

Before specifying a condition for a pure code, it is useful to define
what a pure function is.

Pure functions

A function is pure if:

• No read and write happens without the compiler knowing about
it

• Result must not depend on hidden values (to the compiler) or
any global state information

• It must not alter any input mutable parameter

• No global (i.e. shared) data

Pureness restricts code by not allowing to pass value by refer-
ence, in order not to share a global state.

Thusly, code is pure when all function calls are pure functions.
The following pseudo code shows an example of a pure code.

Algorithm 6: Example of a pure code

1: define M 10

2: define N 10

3: func foo()
4: a[]
5: for i=1 to N do
6: for j=i to M do
7: if j <= 2 then
8: b[j] = Func(a[i])
9: end if

10: end for
11: end for
12: endfunc

The following code is not pure, since it accesses a global variable
via reference.
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Algorithm 7: Example of a non pure code

1: define M 10

2: define N 10

3: a[]

4: func foo()
5: for i=1 to N do
6: for j=i to M do
7: if j <= 2 then
8: Func(&a[i])
9: end if

10: end for
11: end for
12: endfunc

Beauty of pure functions

Pure functions map well on parallel hardware as they don’t re-
quire the implementation of a global memory to exchange data, a
potentially critical bottleneck in most systems. Indeed, implement-
ing global state on hardware requires the presence of some kind of
hardware synchronization mechanism, wasting resources and intro-
ducing wait states for all the components that rely on that informa-
tion. Pure code prevents by design these kind of side effects.

4.5 Iterative Stencil Loops

Appropriate exploitation of HPC is nowadays of paramount im-
portance for many scientific and engineering applications, as the
increasing computational power has allowed to push the limits of
what can be modeled and simulated, widening dramatically the range
of problems that can be addressed. However, architectural trends
show that there is a growing gap between time for processors to per-
form arithmetic operations and time they take to communicate [110],
a limit which is unacceptable for memory bound computations such
as ISLs, an important part of solvers in this field. In this section fo-
cus is on what ISLs are, their properties and characteristics, and how
they are currently treated in the state of the art.
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4.5.1 Definition

The so called Iterative Stencil Loops are basically a class of iter-
ative algorithms, whose features make them belonging to the class
of SANLP (see section 4.1.2), which consists of the repeated updat-
ing of values associated with points on a multi-dimensional grid,
usually 2- or 3-dimensional, modeled as an array, using weighted
contributions from a subset of its neighbors in both time and space.
The fixed pattern of neighbors is called stencil, and the function that
uses those elements to update an array cell is called transition func-
tion. An ISL can be generically represented by the pseudocode of
algorithm 8.

Algorithm 8: Generic ISL Algorithm
for t 6 TimeSteps do

for all points p in matrix P do
p← ftransition(stencil(p))

end for
end for

As previously stated, the number of algorithms that fall into this
category is quite large, which is why is of great concern to efficiently
implement them, even if this is not an easy task at all. Indeed, a lot
of algorithms for scientific computing, such as [39, 172, 187], as well
as image and video processing, such as [52, 90], belong to this class
and can be generalized in the form of algorithm 8

Table 4.10: An illustration of a generic 5-point 2-Dimensional ISL.
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Formal Model

Formally speaking, an Iterative Stencil Loop can be defined as a
5-tuple (I,S,S0, s, T) [86] in which:

• I =
∏k

i=1[0, . . . ,ni] is the index set. It defines the topology of
the array.

• S is the set of states, one of which each cell may take on any
given time-step.

• S0 : Zk → S defines the initial state of the system at time 0.

• s ∈
∏l

i=1 Zk is the stencil itself and describes the actual shape
of the neighborhood. There are l elements in the stencil.

• T : Sl → S is the transition function which is used to determine
a cell’s new state, depending on its neighbors.

Coefficient Types

As stated when ISLs has been defined, the contribution of the
points of the stencil is usually weighted by some coefficients. The
type of coefficients to which neighbours are weighted could lead to
two scenarios:

• Constant coefficients: When the coefficient values are con-
stant scalars, there is no need to read them repeatedly. They
can be instead hard-coded into the stencil loop, resulting in a
reduction of storage requirements and memory traffic. As intu-
ition suggests, the case in which coefficients are constant is the
ideal scenario, since stencil-related optimizations fully impact
the resulting implementation.

• Variable coefficients: In this case the stencil weights can change
during the execution, being different between time-steps or from
one grid point to another. These weights are stored in sepa-
rate grids streamed during the computation, which obviously
causes an extra memory traffic. This requires special care as
stencils are already memory-bound by themselves.
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Boundary Conditions

Depending on the nature of the computation, two basic types of
boundary conditions for the ISLs can be identified:

• Constant Boundaries: This scenario is the one in which bound-
aries are constant during the computation (figure 4.11a). This
is the general case, in which they can be simply represented as
a ghost zone of the stencil array, i.e. the one updated during the
ISL computation. Furthermore, if it is the case in which these
cells have all the same value, or at least they can be clustered
into smaller sets than the entire number of ghost cells, they can
be stored in fewer registers and referenced multiple times. This
is obvioulsy a matter of implementation choiches, as it depends
on the underlying computing architecture.

• Periodic Boundaries: In this case, the grid wraps around all
its dimensions, an operation in mathematics called compactifi-
cation. In the case of a two dimensional grid for instance, this
means that the left boundary is adjacent to the right boundary,
and the top boundary is adjacent to the bottom boundary. This
kind of boundary type is often chosen to approximate large –
or even infinite – systems. Obviously, this means that in this
case also the boundary changes over time, as it is indeed up-
dated during the computation, thus not allowing the optimiza-
tions available when dealing with constant boundaries (figure
4.11b).

(a) An ISL with constant boundaries (b) An ISL with periodic boundaries

Table 4.11: ISLs boundary types.

4.6 Long Term Vision

Trends described in 1.2.6, strongly hint to a future where het-
erogenous systems are the norm. More and more datacenters and
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supercomputers are relying on heterogeneity to achieve faster and
faster computing speed while maintaining the power consumption
as low as possible.

Historically, FPGAs have been slower, less energy efficient and
generally achieved less functionality than their fixed ASIC counter-
parts, but they allowed to quickly prototype components or build
up circuits when ASIC production would be too expensive. Nowa-
days, thanks to technology advancements, FPGAs can realistically
be seen as the next core heterogenous components in (near) future
supercomputing. Right now, researchers are porting algorithms on
this platform to achieve better throughput at lower power consump-
tion than their GPUs counterpart [84, 89, 133, 139, 189, 199].

In a world where energy is an ever scarcer resource, I will rely
more and more on this technology to achieve better power efficiency.
What is restraining the use of FPGA is the higher learning curve and
very complex design tools, compared to CPU and GPUs.

But, as the green-scientific becomes the hot topic, given the trends,
FPGAs will implement more and more scientific algorithms, for im-
proved power efficiency.

4.6.1 Main Characteristics and Implementation Challenges

When it comes to implement stencil computations, there are at
least two important characteristics of those algorithms that must be
taken into account, since they cause some cumbersome implemen-
tation challenges.

Memory Boundedness

The main difficulties that arise when implementing ISLs are due
to the fact that the performance is bound by the memory transfers,
mainly because of architectural limitations – memory is intrinsically
slower than the computational units – but also due to the nature of
these algorithms as they require multiple constant accesses to the
stencil array.

On CPUs based platforms for example, the matrices on which the
computation is performed, are much larger than the capacity of the
available data cache [69,110], causing continuous misses and result-
ing in penalties which inevitably slow down the execution.

Regarding FPGAs, the limited amount of memory resources can
even lead to infeasibility for problems on large grids, not to mention
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port contention on BRAM [59], which is by the way a major concern
not only for ISLs, but for basically every FPGA implementation.

Furthermore, for ISLs in general there is always a bandwidth prob-
lem: in fact, memory slowness can cause the computation to stall if
there is not enough data ready for arithmetic units [207], lowering
performance with repsect to theoretical peak on every device, as the
aforementioned, and including also General Purpose Graphic Pro-
cessing Units (GPGPUs) [180].

Spatial dependence between grid points

Another important aspect to deal with, is the eventual presence
of true data dependencies between updated points of the grid in
the same time frame. Trivially, this yields the following two distinct
cases.

• Dependency-free points This first scenario is the one in which
there is absolutely no dependency between points of the grid,
which implies that every point can be independently computed
from each other. It basically means that updating of points is
trivially parallelizable, giving space to a whole lot of optimiza-
tions, but due to the nature of stencil computations, this also
comes with an important drawback, caused by the temporal
dependency between different time-steps. In fact, when par-
allelizing, this dependencies require communication and syn-
chronization for which non negligible overhead may incur, ob-
taining significantly lower performance than in theory.
The Jacobi iterative method [172, 187], is an example of such a
type of algorithm.

• Dependent points When the neighboring elements used in the
stencil come also from the same time frame, i.e. the data used
for an update comes from a computation made within the same
time-step, this can lead to also spatial dependencies between
points, enforcing an order of execution even in the same time-
step. This sequential ordering implies that no – or at least not
trivial – parallelization optimization can be made. The result
is that, in this case, improvements are even harder to achieve
than in the first scenario.
The Gauss-Seidel method [172] is a perfect example of this cat-
egory. A parallel version of this method has been however de-
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veloped, namely red-black Gauss-Seidel [118], but it requires a
specific traversal of the grid which by the way makes useless
any kind of cache optimization, as switching from one set of
points, i.e. color, from another, cause cache misses that, espe-
cially for large problems, are the dominating factor which neg-
atively impact on performance [207].

4.6.2 State of the Art

The implementation challenges discussed so far in section 4.6.1,
that arise when dealing with ISLs, have created an entire research
branch focused only on optimizing stencil computations. The re-
sulting extensive study has led to a wide range of different opti-
mizations. Here, an overview of them is provided.

Tiling Based Optimizations

The first category is the one in which tiling, also known as block-
ing (see section 4.1.3), is employed to effectively improve perfor-
mance by enhancing data locality and exposing parallelism. This
technique has been exploited in a number of different ways, and per-
formed in both spatial – when possible – and temporal dimension,
resulting in a variety of classes [163], which are shown below.

Table 4.12: Single Iteration Tiling.

Single iteration tiling This first type of tiling is the most trivial one,
as it consists of applying conventional loop blocking to improve
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cache reuse. In this case, a single time frame (i.e. a single iteration)
is partitioned into smaller blocks, allowing points that are close in
space to remain in cache when used, thus allowing to update them
toghether, improving locality [110]. This technique has been also
exploited to distribute the computation to multiple Processing El-
ements (PEs), in order to parallelize points computation within a
single iteration [92], also leveraging specific Application Program-
ming Interfaces (APIs) such as OpenMP [68]. However, tiling across
multiple PEs reaches far from optimal results since stencils along
the boundary of a tile require values that were previously computed
by other PEs, resulting in an increasing need of communication and
synchronization between tiles, proportional to the number of them.
An effective technique to overcome this issue is the one known as
ghost zone optimization or overlapped tiling [107, 117, 134], which basi-
cally consists in the enlargement of the tiles with ghost zones, i.e. the
overlapping regions between tiles, replicating some computations
but nevertheless reducing communication and synchronization. Al-
though it may seem that applying this technique can always lead to
better performance, despite replication, it must be noticed that an
improper selection of the ghost zone size may result in even worse
performance with respect to no optimization at all.

As last consideration, when dealing with ISLs which have also
spacial dependencies between grid points, this type of optimization
is not applicable, at least not for parallelization purposes, and per-
formance are usually not satisfying also regarding cache optimiza-
tions [207].

Table 4.13: Time Skewing.
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Time skewing In this scheme of tiling, multiple iterations are col-
lectively partitioned into blocks, so the essential difference between
this strategy and single-iteration tiling, is that in this case multiple
iterations are included as part of each tile. The reason beyond the ap-
plication of such a strategy is to use also the temporal locality, and
thus to increase the overall data reuse. However, in order to make
tiling legal, loop skewing (see section 4.1.3) along the time dimen-
sion is required. In fact, due to the fact that points update is per-
formed in both spatial and temporal dimensions in each block, they
must shift their collection of points backward on the time dimen-
sion to respect temporal dependencies induced by the ISL, i.e. trans-
form dependency distances into non-negative values [168], result-
ing in a loss of inter-tile concurrency, because of the fact that the
skewing introduces inter-tile dependencies in the spacial direction.
As it may seem that this variant could always deliver better perfor-
mance than the simple single-iteration tiling, it actually really de-
pends on a careful selection of the skewing factor [163], as well as
on the form of the tile [168, 188], which can be a major concern es-
pecially on FPGAs [219]. With respect to the previously mentioned
strategy, time skewing can provide better cache hit rates and effec-
tively reduce processor idle time caused by ISL’s memory bounded-
ness [212].

As for the previous tiling strategy, even in this case block dis-
tribution among different PEs is possible [21], but likewise single-
iteration tiling, it requires explicit synchronization between them,
since a block must wait for its neighbors to complete in order to
have enough data to start. As a consequence of this needed scheme
of synchronization, rather than a purely parallel execution, in this
case blocks are executed in a pipeline fashion.

A possible solution to the necessity of time skewing when tiling
along multiple iterations is proposed in [137], where code transforma-
tion is performed with the aim of fusing the stencil loops, in order
to reduce the number of reads and writes, and increase instead the
computational intensity. This is an effective solution to overcome the
memory boundedness of ISLs, since usually the computational part
of those algorithms is a fraction of the entire execution time, and
enlarging it with a corresponding reduction of memory traffic can
exploit the computational power of modern architectures. A very
similar technique has been developed in [54], in which a domain-
specific compiler is proposed, namely Caracal, able to perform un-
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rolling of the time loop and fuse accordingly the stencils, with the
same effects as of [137].

Wavefront parallelization This strategy is somehow similar to the
previous, but instead of pipelining the execution of time-skewed
blocks, these blocks are scheduled collectively in a wavefront fash-
ion [180,196,208]. In this case then, instead of requiring explicit syn-
chronization, blocks are arranged in a way that on the time dimen-
sion the computation blocks are independent from each other, thus
not requiring synchronization.

Table 4.14: Wavefront Parallelization.

Although in [163] this scheme has been explicitly defined as the
one in which multiple blocks are scheduled together, this class can be
easily extended to the case in which only one block implements a
single iteration. In fact, these collections are executed in a pipeline
fashion along the time dimension, coming with no need of synchro-
nization. Indeed, this is exactly the kind of behavior exhibited when
tiling is only applied on the time dimension [146,175,176], and by far
this approach is the most promising one with respect to the previous
two, as it has been proven to be scalable [146, 175, 176], and comes
with no communication overhead.

In a sense, the work proposed in this thesis can be at least par-
tially included in this class.
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Domain Specific Language (DSL) Based Optimizations

Another important approach towards optimization, extensively
used in literature, and which is becoming increasingly popular, con-
sists of the exploitation of Domain Specific Languages (DSLs) and
ad-hoc frameworks. As ed General Purpose Languages (GPLs) are
the dominating software development tools in HPC, the lack of spe-
cialized features for narrow domains such as ISLs is a great limita-
tion, since most of the times it does not allow to express a problem in
a way which is easy to manipulate, making optimal implementation
an hard task.

In this sense, Domain Specific Languages are certainly more pow-
erful as they provide, the ability to define a problem within the spe-
cific application domain at a cost of losing broad applicability (al-
though in some cases it could be still technically possible). In such
a way some features and some specific semantics are explicitly ex-
pressed, which enables whole sorts of transformations, manipula-
tions and optimizations simply not possible – or hardly achievable
– using general purpose languages.

Currently, the ISL domain can count a number of available DSLs,
each with its own peculiarities. For instance, PATUS [55] is able to
achieve a high performance by auto-tuning, targeting different hard-
ware architectures, while Pochoir [193] provides a C++ template li-
brary based on a divide-and-conquer skeleton which is then trans-
lated into Cilk [44], a C/C++ extension designed for multithreaded
parallel computing. ExaStencils [122] employs a direct mathematical
formulation (ExaSlang) of the problem, and through a series of steps
of transformations, included a wide range of PM-based optimiza-
tions, generates target code in a specific language, which by now
is C/C++, but in the future could be extended to other languages.
DeLite [190] abstracts from Scala with the aim of making stencil pro-
gramming easier, and uses metaprogramming to construct an IR of
the problem and compile to a large number of languages, so that it
can easily target heterogeneous hardware. In [217], a single mathe-
matical formula is used to implement 3-D stencil codes on GPGPUs,
via auto-tuning and automatic target code generation, and GPGPUs
is also the target device of [107], in which low-level code is gener-
ated, starting from an abstract representation, by trading an increase
in the computational workload for a decrease in the required global
memory bandwidth. In [209] a single high-order function specified

113



i
i

“phdthesis” — 2015/12/14 — 9:35 — page 114 — #130 i
i

i
i

i
i

Chapter 4. A Review of The Polyhderal Analysis Framework

in Haskell, and specifically in CλaSH [26], a functional HDL able
to translate plain Haskell (with some restrictions) into synthesizable
VHSIC Hardware Description Language (VHDL), is used in combi-
nation with a series of transformations to generate hardware accel-
erators.

As final consideration, although using DSLs can lead to good
performance, as previously stated in HPC this is not the common
practice at all, as GPLs are preferred due to their versatility and ease
of use. This trend is not going to change, at least in the near future,
and because of that, trying to achieve the best from General Purpose
Languages is still an important but nevertheless challenging task.

Custom architectures

When designing custom hardware, FPGAs offers a high flexibil-
ity, and nevertheless can deliver sustained performance with high
energy efficiency, often orders of magnitude better than other hard-
ware platforms. Due to those interesting characteristics, FPGAs have
been extensively used as target device for the optimizations afore-
mentioned, but they express their real potential especially when de-
signing custom microarchitectures. In fact, an increasing number of
works are focusing on exploiting FPGAs to implement ISLs with the
production of ad-hoc hardware, finely designed to efficiently lever-
age the regular structure of this class of algorithms, which allow
complete compile-time analysis. In particular, this kind of approach
has been proved to be especially useful to overcome the memory
boundedness issue of stencil computations.

In [169] for instance, a generic tunable VHDL template has been
proposed to parallelize 3-D stencil computations, which use, in fa-
vor of Partial Buffering (PB) where only the data needed by the
current computation is stored to minimize memory consumption,
the so called Full Buffering (FB) [126], a technique in which data is
stored on the on-chip memory until all the computation relying on
it has completed, showing that the increasing number of available
resources in modern FPGAs has made the time ripe enough to allow
to push the limits of what can be achieved on such a device.

In [59] the PM is employed to take advantage of the stencil access
pattern and perform non-uniform memory partitioning in order to
generate a custom microarchitecture, streaming oriented, which is
proven to be optimal with respect to memory usage, since it allows
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FB with the minimum number of reuse buffer banks and minimum
buffer size. Although this architecture has been never really tested
– it has been actually only simulated – to prove its validity, and the
case in which the computation has as input other matrices than the
stencil one is not covered, the ideas behind this work are still of great
value, so that they have been used in this thesis as basis for the de-
velopment of the proposed custom memory microarchitecture.

In [116] 2-D stencils are addressed using ScalableCore, a system
composed of multiple small capacity FPGAs, connected in a 2-D-
mesh. To efficiently exploit such an architecture, the stencil compu-
tation is tiled and each computational block is assigned to an FPGA,
and in order to overcome the communication overhead introduced
by tiling, the execution order is customized in each FPGA. The
work demonstrate that a custom FPGA-based architecture can de-
liver power efficiency much higher than traditional computing de-
vices.

In [182] a memory architecture is developed to implement sym-
metric 3-D stencils, i.e. of the form of n× (n+1)×n, which use First
In First Out (FIFO) queues for both the input and output stream,
one for each dimension, a data engine (also called front-end) which
prefetches data, a compute engine (the back-end), which consists of
multiple instances of the computation unit, and a control engine re-
sponsible for synchronizing the data flow in the whole architecture.
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CHAPTER5
On how to Explicitely Isolate Data and

Computation

IN this Chapter we introduce a novel technique to accelerate algo-
rithms and codes that expose plenty of data level parallelism, a
typical situation when analyzing High Performance Computing

(HPC) codes. We assume that codes can be modeled as Static Affine
Nested Loop Program (SANLP), an can be analyzed by means of
Polyhedral Analysis (PA). When this assumptions are right, we demon-
strate via the undermentioned methodology how generating multi-
ple tiled hardware accelerators benefits the overall performance of
the resulting system (both in terms of power efficiency and through-
put).

5.1 Introduction

In the race to exascale computing, academic and industrial re-
search is focused on dramatically improving the power efficiency of
nowadays computing systems. In order to attain this goal, different
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kinds of heterogeneous systems are being employed as a successful
approach, as recent trends show.

Indeed, modern power-efficient supercomputers employ Graphic
Processing Unit (GPU) as privileged components to attain dramat-
ically improved overall power efficiency than Central Processing
Units (CPUs)-only based systems, on specific workloads, notably
those exposing plenty of data level parallelism, the key to extract
performance from spatial architectures. While there is still plenty of
room for further improvements, the nature of the underlying archi-
tectures of GPUs will eventually plague power-efficiency in a similar
fashion to what is happening to CPUs on said workloads

Developing on these considerations, a consistent body of research
elaborates on the benefits deriving from the employment of Recon-
figurable Hardware (RH) as the core computational element in fu-
ture heterogeneous system to attain the best power efficiency. How-
ever, traditional toughness associated with the development of hard-
ware based reconfigurable accelerators, usually implemented on Field
Programmable Gate Arrays (FPGAs), makes the transition and the
further development of state of art, power efficient RH based sys-
tems very tough.

High Level Synthesis (HLS) plays a central role in further de-
velopment of RH as core computational element of future heteroge-
neous systems, as it both dramatically reduces the burden on the
application designer and drastically speeds up the exploration of
different hardware design tradeoffs. However, a major limitation of
modern HLS tools is that, while it is possible to quickly explore sim-
ple, well known optimizations such as loop unrolling and pipelin-
ing, obtaining high quality results, this is not true for most of the
complex and powerful generic polyhedral affine transformations.
This limits the ability to better explore area/power/communication
trade offs, specifically in respect to data-parallel workload distribu-
tion.

Additionally, while the last decade saw an increasing effort put
into the development of techniques aimed at improving the qual-
ity of the resulting hardware components, relatively less effort has
been spent on System Level Design (SLD) aspects, leaving applica-
tion designers of RH based heterogeneous systems the entire effort
of planning how to distribute workload among heterogeneous com-
putational elements. It is difficult to design an hardware accelera-
tor with the right trade-off between computation/ communication/
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parallelism/ memory efficiency.
In this work we address both those problems with a focus on amply

data-parallel codes, and provide the following contributions:

• first, we develop a novel HLS approach to using Polyhedral Model
(PM) as a means to explicitly extract and isolate data and compu-
tation from affine codes in order to efficiently divide the workload
among an arbitrary number of nodes, in the light of the current and
foreseeable trend of adoption of reconfigurable hardware in the data-
center

• second, and towards energy proportional computing, we improve the
current state of art in single core acceleration, as our methodology
obtains near-linear speedup with the area at disposition to accelerate
the given workload.

The rest of the chapter is organized as follows: in Section 5.2 we
give a thorough review of the state-of-the-art and related works. In
Section 5.3 we detail the contribution of this work, and its limitations
of applicability. The experimental results are provided in Section
5.4. The chapter is concluded in Section 5.5, along with hints about
future work.

5.2 Related Work

Recent years have seen dramatic improvements in High Level
Synthesis (HLS) tools; efficient translation of numeric [206], image
processing algorithms [150], and stencil computations [219], where
relevant application domains benefits from both research on com-
pute and/or memory/communications network aspects.

Due to the well-known drawbacks HLS has (such as area over-
head and slow downs with respect to manually crafted designs) last
decades’ studies focused on more formal approaches to systemati-
cally synthesize better circuits; one notable framework in this con-
text is the PM and the associated code analysis technique, collec-
tively called Polyhedral Analysis [12,35,36,38,125,149,153,154,158,
165, 201–203, 218, 219]. Under this representation it is possible to
compute dependencies, find bounds, and reorder instructions in a
completely automated manner relying on the same set of sound and
comprehensive assumptions of PM.

The most relevant tools for doing PA are Polly [101], Polyhe-
dral Compiler Collection (PoCC) [18] and PLuTO [46]. The first is
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a popular LLVM plugin capable of applying PA on its intermediate
representation right before invoking the backend (which could, for
example, be LegUp [7, 50]). The second is a popular compilation
suite supporting polyhedral analysis, with an HLS-oriented version
called PolyOPT/HLS [123]. The last is a compilation suite capable
of auto tuning the affine transformations made to the original code
in order to achieve quasi-linear speedup with the number of cores
by simultaneously applying code restructuring, improved data lo-
cality, and automatic OpenMP parallelization. Variants of the PA-
based techniques already implemented in production compilers can
be applied to HLS as well, with adequate measures to cope with
the specific requirements of hardware generation [155, 218, 219] and
memory architecture considerations [59, 62, 131, 159, 206].

As a hot topic, PM is the kernel of many current research direc-
tions. We cite two of them, relevant to this work.

The first one is that of the Daedalus framework, proposed in
[143–145], where authors employ a tool – PNGen [203] – to derive a
specialization of a Khan process network called Polyhedral Process
Network (PPN). PM is employed to model the target code as a par-
allel network of (pure) processes exchanging data through bounded
First In First Outs (FIFOs), where reads and writes occur in a (guar-
anteed) deadlock-free order inferred at compile time from C code. In
the Daedalus framework the nodes are general purpose processors
of a Network on Chip (NoC). Broadly speaking, Daedalus frame-
work maps a PPN onto a Multi Processor System on Chip (MPSoC).
It is worth to note that not every node of the network can run con-
currently: this contrasts with our approach, in which we synthesize
entire portions of parallel sections into isolated portions of code and
corresponding data, while guaranteeing that those synthesized ac-
celerators will actually run in parallel.

The other research direction was pointed out in [21, 72, 136, 159,
218,218,219]. In their works they propose an automated framework
capable of extracting the polyhedral model and restructure the code
to achieve better data access and reduce area utilization. Memory
architectures for affine computation have been heavily explored in
[59, 62, 131, 159, 206], and are orthogonal to this work. Indeed, they
achieved better performance than simple HLS, but only limited to
single core, where the inner HLS process prevents further SLD steps.

While many of the cited work elaborates on the techniques re-
quired to apply PA to HLS, no one directly elaborates on the role
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of the PM to explicitly isolate data and corresponding code in or-
der to separate this “unit of computation” from the rest of the ac-
celerator. A new SLD technique is needed to allow large data par-
allel portions of computations to be arbitrarily split and isolated in
order to distribute the resulting workload among multiple FPGAs,
which is precisely the scope and the novelty of this work. Lastly, it is
worth to note that most works related to memory architectures tai-
lored around code modeled through the PM are orthogonal to this
work, and are expected to be integrated as future work.

5.3 Data And Computation Isolation

As reported in [124,159], an effective way of improving through-
put with loop pipelining is to eliminate loop-carried dependences.
Indeed, affine programs usually expose an inner, embarrassingly
data-parallel loop, possibly after adequate loop transformations that
can be effectively represented using PM [218,219]. Even rich Domain
Space Exploration (DSE) steps could be easily added by invoking
tools like that presented in [12, 158] . While authors in [124, 159] fo-
cus on the acceleration of such loops by means of HLS pipelining
directives, we further extend this concept by:

• identifying not only the innermost, but also higher-level loops
that do not introduce loop-carried dependences, and,

• isolating data and code, by means of PM, in tiles that can be
scheduled either in the same core or on (possibly remote) loosely-
dependent accelerators.

We generate N sub-kernels capable to process an Nth of the in-
put data produced by the statements of the analyzed loop. They
are separated in two parts: the first is the Processing Unit (PU), i.e.
the place where actual computation occurs. Hardware Description
Language (HDL) is generated via HLS, to which is fed the code ex-
tracted after PA from the corresponding tile. The latter is enough
local memory to contain the data required to produce the aforemen-
tioned Nth of the input data.

In order to isolate the instructions and the data they process, we
rely on the tiling transformation [167]. We separate the workload by
cutting the data domain into multiple splits, each of which is char-
acterized by an amount of data to process and an the corresponding
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instructions insisting on them. We tile by invoking parts of the PoCC
toolchain [33, 78].

However, we extended this transformation in the sense of data
locality. In order to do so, we analyze the tiled code, and the corre-
sponding access relations Γs,A(~ξs). Then, we compute the amount of
local memory required for all the reads and writes to be local (in FPGA
terms, localized in Memory LUTs or BRAMs). We transform HLS
code so that data required by the cores is sent through streaming in-
terfaces to them, and such that the references occur – in HLS – in the
local store. The local store of the generated cores is employed as a
cache: glue logic is responsible for correctly treating the reads and
writes.

Moreover, this restructuring of code and local stores enables, by
design, the activation of some specific HLS optimizations, like data
flow and pipelining, which are directives that are sometimes not
available at all without proper code restructuring. As these opti-
mizations are always available after memory reshaping, we enable
them during core-generation as part of the methodology.

We refer to each of these sub-kernels as computational unit. For
each isolated computational units, we compile a function in the HLS
source code, with the additional required glue logic and the stream-
ing interfaces that connect the computational units to the rest of the
user logic. Part of that user logic requires that, before the next iter-
ation starts, all the data processed by computational units be read,
as a means for synchronization. The process and the resulting archi-
tecture is depicted in Figure 5.1. This separation in multiple compu-
tational units will introduce some communications costs, but as we
will show in the next chapter, these are abundantly justified by large
throughput gains.

Algorithm1 describes into more detail the methodology. First, we
model the Static Control Part (SCoP) in PM. Then, given a splitting
factor, we tile the target codes. This is done through the invocation
of the Chunky Loop ANalyzer (CLAN) [33] toolchain. Then, we re-
generate each tiled block, and manually add the required glue logic.
Finally, each derived component is passed to an HLS tool, and the
components are assembled

Note how all of the optimizations that can be introduced with
the help of the PA are completely independent from HLS directives,
which are then optimizations orthogonal to our methodology. Ad-
ditionally, due to the way the separation of logic and data is carried
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User
Logic

User + Glue Logic 

User + Glue Logic IPIF

BRAM

PU

BRAM

PU

BRAM

PU

BRAM

PU

Table 5.1: Methodology overview. The original accelerator (left) is separated into
multiple computational kernels (right), each featuring its local store and related
processing unit.

out, this methodology is orthogonal to other techniques, specifically
those related to memory architectures for stencil computation such
as [218], the addition of which in our architecture is left as a future
work.

As the computational units are self contained components, we
can use them regardless from where they are physically located.
This enables us to make initial considerations on an FPGA based
distributed computing system. Following this technique we are able
to separate computation on different processing units and enabling
HLS and SLDdirectives further improve the throughput of our solu-
tion.

5.3.1 Limitations

As with most state-of-the-art techniques relying on PA, we can
only analyze SCoPs. While this limits the generality of the approach,
most scientific computational kernels can and are actually described
as SCoPs. Moreover, as they generally expose plenty of data-level
parallelism, they are also the perfect fit for our approach.

Another limitation in the current process is that while most tools

123



i
i

“phdthesis” — 2015/12/14 — 9:35 — page 124 — #140 i
i

i
i

i
i

Chapter 5. On how to Explicitely Isolate Data and Computation

Algorithm 9: Methodology Pseudocode
pmRepr← CLAN(InputFile)
if pmRepr != regular then
exit(−1)

end if
deps← CANDL(pmRepr)
deep← findParallelDeep(pmRepr,deps)
inputTransf← tiling with current splitting factor
transformedPM← CLAY(pmRepr,deps, inputTransf)
cFileNames, tclFileNames, tclArch = []
for all Scop in transformedPM do
listBlocks← getBlocksAtDeep(pmRepr,deep)
for all block in listBlocks do
block← glue & synchronizatinlogic
cFileNames.append(writeCFile(block))
tclFileNames.append(writeTclFile(block))

end for
tclArch = writeArchTcl(listBlocks)

end for

are available as open source and allow most operations in the PM
domain, the choice of the splitting factor, additional affine transfor-
mations and the generation of the glue logic are still manual pro-
cesses. However, as already argued, affine transformations and split-
ting factor can effectively and automatically be explored via tools
like LetSee [155]. The generation of the glue logic, on the other hand,
would require a specific tool for the manipulation of the polyhedral
domain and the polyhedral access relations. However, this process
can be automated for SCoPs, as order of operations are known in
advance.

5.4 Experimental Results

We tested our methodology on multiple kernels derived from the
Polybench benchmark suite [152]. Before running them on FPGA
we rewrote the kernels in a more HLS-friendly way (like: adoption
of adequate bit-widths for involved types, addition of streaming in-
terfaces, and eventually introduction of HLS directives). We tested
the methodology on the following kernels:
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jacobi2d Jacobi 2D stencil computation. The simplest of the kernels.
It exposes plenty of data level parallelism in the central loop,
as the core dependencies arise from inter-loop dependencies,

2mm two matrix multiplication kernel. This kernel has an highly
data-parallel internal loop. However, it is difficult to further
extract parallelism due to Read-After-Write (RAW) dependen-
cies.

3mm three matrix multiplication kernel. A more complex, but anal-
ogous to 2mm, kernel.

2dconv 2-D convolution kernel. This kernel features a nested loop
with high data level parallelism. This kernel is particularly
interesting, as FPGAs become the platform of choice for im-
plementing general filters and convolutional networks (like in
[61])

bicg Bi Conjugate Gradient computation, another popular, data-parallel
affine kernel.

We tested this methodology by synthesizing and running the re-
sulting designs on a ZedBoard equipped with a Zynq7000 device.
While not exactly a high-end device, we anyway observed large rel-
ative speedups, that demonstrate the validity of our approach.

We employed the Vivado 2014.3 toolchain and Vivado HLS to
generate HDL components.

5.4.1 Experimental Data

We implemented each previously described kernel in three dif-
ferent ways:

Simple HLS The designs derived using this strategy are our base-
line. We took the kernel code and added the communication
interfaces needed to realize a channel between the main mem-
ory and FPGA.

Split-Down Designs obtained this way have parallelized by means
of tile only, without relying on any hardware optimization.

Computational Units These designs were generated using our method-
ology. Base splitting factor is 4. Amount of localized memory
depends on the kernel.
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Theoretical best This is a theoretical extrapolation obtained by as-
suming all resources on one ZedBoard, increasing the number
of parallel cores as much as possible.

Kernel Dims BRAM (%) DSP (%) Watt Time (ms)
Jacobi 2-D 300x300 93 4 1,558 117
2mm 200x200 93 2 1,547 800
3mm 140x140 92 4 1,572 1120
2-D Convo-
lution

300x300,
9x9 conv.

97 4 1,568 45

BiCG 300x300 94 5 1,554 11,75

Table 5.1: Simple HLS results. Note the heavy pressure on BRAM usage, with
poor usage of other resources.

Kernel Dims BRAM (%) DSP (%) Watt Time (ms)
Jacobi 2-D 300x300 97 9 1,66 52
2mm 200x200 N.A. N.A. N.A. N.A.
3mm 140x140 N.A. N.A. N.A. N.A.
2-D Convo-
lution

300x300,
9x9 conv.

97 15 1,707 16

BiCG 300x300 100 18 1,691 3,64

Table 5.2: Split code. While tiling generally improves the overall execution time,
this usually comes at the expense of resource usage: indeed, 2mm and 3mm
could not be synthesized using this approach.

Kernel Dims BRAM (%) DSP (%) Watt Time (ms)
Jacobi 2-D 300x300 54 78 1,738 6
2mm 200x200 72 72 1,760 21
3mm 140x140 95 74 1,746 42
2-D Convo-
lution

300x300,
9x9 conv.

45 90 1,790 1,6

BiCG 300x300 96 72 1,856 0,725

Table 5.4: Theoretical best. Maximal number of splits. This data shows how the
synthesized Computational Units approach would perform assuming maximal
utilization and bandwidth is not a bottleneck.

We dimensioned the problem so as to fill, in the baseline ver-
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Kernel Dims BRAM (%) DSP (%) Watt Time (ms)
Jacobi 2-D 300x300 9 13 1,618 30
2mm 200x200 9 9 1,6 152
3mm 140x140 19 15 1,640 209
2-D Convo-
lution

300x300,
9x9 conv.

9 18 1,682 7,8

BiCG 300x300 24 18 1,742 1,7

Table 5.3: Computational Units approach. 4 splits. Note how parallelizing (due
to tiled components) and localizing data keeps resource usage under control.

sion, our Zynq7000; the most constrained resource are BRAMs, as
the original code allocates all the data as local store. While they are
almost completely used, all the other resources – like LUTs or DSPs
– are almost unused. Note how this is an inefficient employment of
resources, as most logic is wasted (see Table 5.1); however perfectly
working, the naïve approach can only be considered the baseline
design.

We then created the parallel tiled version, split factor 4. As we
need to move back and forth data to and from the hardware accel-
erator, we opt to synthesize a DMA controller per core in order to
send and receive data in a completely asynchronous way. While
other implementations are feasible, we chose this solution as it de-
livers the best throughput, as each DMA controller can transfer data
independently from each other. As expected, the generation of par-
allelized hardware produces better results than plain conversion of
sequential code; however, this is not possible in some cases, as data
dependencies induce the HLS tools to instantiate a too much local
memory. However, execution runtime is better than the baseline, as
we see good speedups in synthesizable designs.

Then we designed one accelerator per computational kernel, us-
ing the methodology presented in this work. We obtain a better
balanced overall design with respect to all other approaches. The
source of this drastic improvement is the addition of both the glue
logic and the computational units, mechanism that allows us to bet-
ter exploit the local stores via data (and BRAM) reuse. Obviously,
large speedups are obtained against the baseline approach; how-
ever, even against the tile-only parallel version we obtain dramat-
ically better results.
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Table 5.2: BRAM Usage [%]. Note how BRAM usage is scarce in the third
approach, even though performances are dramatically better than the other ap-
proaches.

5.5 Conclusions and Future Work

We have shown in this work a novel technique that explicitly iso-
lates data and computation meant to pave the way to further SLD
methodologies meant to distribute “units of computation” among
an arbitrarily large number of Field Programmable Gate Arrays (FPGAs).
We achieve large, near-linear speedups, demonstrating how PM can
be employed to distribute a data-parallel workload in a future multi-
FPGA based system.

As already stated in Section 6.2, this work is orthogonal to other
HLS techniques: given our results and the conducted experience,
we believe that future work would benefit from the introduction of
a memory architecture similar to that of [206]. Additionally, further
work is to be conducted on the choice of the specific affine transfor-
mations that might improve the overall process, as well as on the
architectures for effective multi-FPGA designs.
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Table 5.3: DSP Usage [%]. Note how DSP usage is more efficient in the third
approach, as we can better paralyze the computational hard part of the kernels.

Table 5.4: Watt Usage [W]. Note how our approach draws slightly more rela-
tive power; however, as a much larger throughput is obtained, overall power
efficiency is improved.
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Table 5.5: Execution Time [s]. Note how execution time is drastically reduced
in the third approach. Black columns correspond to designs that could not be
synthesized due to excessive resource usage.
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CHAPTER6
Towards the Optimal Iterative Stencil Loops

Implementation

IN this Chapter we introduce a novel technique to operate an imperative-
to-streaming translation of SANLP codes. This technique real-
izes a novel, highly effective HLS code manipulation technique

featuring the generation of dataflow-by-construction hardware accel-
erators and full on-chip buffering of reusable data.

6.1 Introduction

Numerical methods for partial differential equations solving em-
ployed in weather and ocean modeling [43, 129], fluid dynamics
[73, 179], quantum dynamics simulations [140], heat diffusion [93],
geometric modeling [115] and non-equilibrium statistical mechanics
[51], but also seismic simulations [170] and cellular automata [141],
as well as multimedia/image-processing applications such as [102],
gaussian smoothing [184] and Sobel edge detection [23], represent
only a fraction of a wide class of applications sharing the same com-
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39:2 R. Cattaneo et al.

ALGORITHM 1: Generic ISL Algorithm
foreach t 6 TimeSteps do

foreach points p in matrix P do
p ftransition(stencil(p))

end
end

Fig. 1: An illustration of a generic 5-point 2-Dimensional ISL.

and Stockman 2001] and Sobel edge detection [Arandiga et al. 2010], represent only a frac-
tion of a wide class of applications sharing the same computational nature, in which a
series of sweeps are performed over a regular grid, whose points are updated using a fi-
xed nearest neighbor pattern. Algorithms and codes structured this way are called Iterative
Stencil Loops (ISLs).

Iterative Stencil Loops are a class of iterative algorithms repeatedly updating values
associated with points on a multi-dimensional grid, using weighted contributions from a
subset of its neighbors in both time and space (see Figure 1). The fixed pattern of neighbors
is called stencil, and the function that uses those elements to update an array cell is called
transition function. An ISL can be generically represented by the pseudocode of algorithm
1.

As already mentioned, the number of algorithms that fall into this category is fairly
large and relevant to both industry and science, which is why efficiently implement them
is of great concern.

As they are characterized by a regular computation structure, they are ideal can-
didates for automatic compile-time analysis and transformation aimed at improving their
run time performance. While many state of the art works precisely explore this oppor-
tunity (particularly in the multicore/multi processor domains), ISLs memory boundedness
and spatial dependencies limit the scope of current transformation, analysis, or optimization
techniques [Meng and Skadron 2009; Li and Song 2004; Christen et al. 2011].

With ISLs’ memory boundedness we refer to ISLs’ requirement for potentially large
transfers of data blocks in order to compute the next state of each element of the pro-
blem grid. Additionally, depending on the size of the grid and the stencil, and the degree
of parallelization, also processor-to-processor bandwidth might be an issue, as halos (i.e.:
portions of data processed by a processing unit and required by another to progress the
computation) must be transferred, too.

ISLs’ spatial dependencies, on the other hand, is the presence of true data dependen-
cies in ISLs’ codes between updated points of the grid between different time frames. De-
pending on whether further true data dependencies are present inside each time frame or
not, automatic parallelization and further aggressive optimizations might or might not be
made, making the overall automatic optimization process heuristic and more complex.

Some relevant consequence induced by these properties are:

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 39, Publication date: March 2015.

Table 6.1: On the left, a generic ISL pseudocode. On the right, an illustration of
a generic 5-point 2-Dimensional ISL.

putational nature, in which a series of sweeps are performed over a
regular grid, whose points are updated using a fixed nearest neigh-
bor pattern. Algorithms and codes structured this way are called
Iterative Stencil Loops (ISLs).

These algorithms update values associated with points on a multi-
dimensional grid, using weighted contributions from a subset of its
neighbors in both time and space (see Figure 6.1). The fixed pattern
of neighbors is called stencil, and the function that uses those ele-
ments to update an array cell is called transition function. An ISL can
be generically represented by the pseudocode of algorithm reported
in Figure 1 on the left. As already mentioned, the number of algo-
rithms whose computational kernels fall into this category is large
and relevant to both industry and science, which is why efficiently
implementing them is of great concern.

As they are characterized by a regular computation structure,
they are ideal candidates for automatic compile-time analysis and
transformation aimed at improving their run time performance. While
many state of the art works precisely explore this opportunity (par-
ticularly in the multicore/multi processor domains), ISLs memory
boundedness and spatial dependencies limit the scope of current trans-
formation, analysis, or optimization techniques [55, 125, 134].

With ISLs’ memory boundedness we refer to ISLs’ requirement for
potentially large transfers of data blocks in order to compute the
next state of each element of the problem grid. Additionally, de-
pending on the size of the grid and the stencil, and the degree of
parallelization, also processor-to-processor bandwidth might be an
issue, as halos (i.e.: portions of data processed by a processing unit
and required by another to progress the computation) must be trans-
ferred, too.

ISLs’ spatial dependencies, on the other hand, is the presence of true
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6.1. Introduction

data dependencies in ISLs’ codes between updated points of the grid
between different time frames. Depending on whether further true
data dependencies are present inside each time frame or not, auto-
matic parallelization and further aggressive optimizations might or
might not be made, making the overall automatic optimization pro-
cess heuristic and more complex.

Some relevant consequence induced by these properties are:

• The performance of parallelization-oriented techniques is bounded
by the available off-chip and on-chip bandwidth, due to the
un/loading of the working sets into caches, the synchroniza-
tion of the parallel units, and halos exchange. Hence, in most
cases the achieved performance is far below than the predicted
one;

• Techniques designed to take advantage of data locality are not
really effective when designing custom accelerators, mainly due
to the nature of the computing architectures on which they are
applied; a well designed pipelined architecture, given the reg-
ular structure of ISLs codes, is comparable in structure and per-
formance to the tiled one;

• Although the employment of custom logic explicitly designed
to accelerate a specific ISL is promising, it is in general a hard
task.

6.1.1 Contributions

To the best of our knowledge, no work addresses all the pre-
sented issues at once, as it either focuses on a subset of them or fails
to properly consider bandwidth and memory as the limiting factor
of a system designed to scale. Aim of our work is to simultaneously
address all these issues at once with the definition of a proper ISL-
centric methodology.

Therefore, our contribution is:

1. A streaming architecture implementing a single stencil time-
step able to realize full data reuse with the minimum on-chip
memory requirements while allowing for multiple concurrent
accesses, the Streaming Stencil Time-step (SST); we realize it as
a distributed architecture exploiting the inherent parallelism of
a FPGA;
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2. A scalability-oriented technique able to deliver quasi-linear speed-
up thanks to constant bandwidth requirement, namely SSTs
queuing, our source of parallelism;

3. An architecture and a methodology to exploit it – a design au-
tomation flow – to automatically implement ISLs with the pro-
posed hardware accelerator.

The remainder of this Chapter is organized as follows. Section
2 thoroughly reviews related works and their limitations. Section
3 precisely delineates the contribution of this work to the state-of-
the-art. Section 4 is an introduction to the overall methodology. The
SST, the core computational element of the proposed system, is thor-
oughly described in Section 5. Details on how the system can be
effectively scaled using the SST queuing technique is presented in
Section 6. Section 7 provides experimental results, both of the sin-
gle SST component and the queued ones, with comparisons against
CPUs. Finally, Section 8 concludes the thesis and elaborates on fu-
ture works.

6.2 State-of-the-Art

ISLs have been extensively studied in state-of-art-works. We di-
vide the section into three parts to introduce the most relevant tech-
niques and compare them against our solution.

6.2.1 Tiling Based Optimizations

Tiling, also known as blocking, is a code optimization technique
employed to both enhance data locality and exposing parallelism.
This technique has been exploited in a number of different ways,
and performed in both spatial – when possible – and temporal di-
mension [163], as we show below.

Single iteration tiling. The earliest and simplest tiling-based tech-
nique usually employed both in CPU and GPGPU code optimiza-
tion consists of applying conventional loop blocking to improve cache
reuse. In this case, a single time frame (i.e. a single iteration) is par-
titioned into smaller blocks, allowing points that are close in space
to remain in the cache when used, thus allowing to update them
together, improving locality [110]. This technique has also been ex-
ploited to distribute the computation to multiple processing elements,
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in order to parallelize the computation of next-state points within a
single iteration [92], also leveraging specific APIs such as OpenMP.
However, tiling across multiple processsing elements potentially in-
curs in heavy off-chip and on-chip bandwidth requirements, as sten-
cils along a tile’s boundary require values that were previously com-
puted by other processsing elements, increasing communication and
synchronization between them. An effective technique to overcome
this issue is the one known as ghost zone optimization or overlapped
tiling [117, 134], which consists in the enlargement of the tiles with
ghost zones, i.e. the overlapping regions between tiles, replicating
some computations but nevertheless reducing communication and
synchronization. Although this technique might mitigate commu-
nication issues, an improper selection of the ghost zone size may
result in even worse performance with respect to no optimization
at all [107]. Additionally, generic processors deliver poor power
efficiency figures compared to custom logic accelerators, as most
of their area is dedicated to coping with irregular code computa-
tion. As a final remark, dealing with ISLs with spacial dependen-
cies between grid points forbids the application of this optimization
scheme for parallelization purposes, and performance are usually
degraded even with cache optimizations as outlined in [207].

Time skewing. In this tiling scheme, multiple iterations are collec-
tively partitioned into blocks: with respect to single-iteration tiling,
multiple iterations are computed as part of each tile. The reason be-
yond the application of such a strategy (specifically in CPUs and
GPGPUs) is to exploit temporal locality, too, thus increasing the
overall data reuse factor. However, in order to make tiling legal,
loop skewing [210] along the time dimension is required. In fact,
as point update occur in both spatial and temporal dimensions in
each block, they must shift their collection of points backward on
the time dimension to respect temporal dependencies induced by
the ISL, i.e. transform dependency distances into non-negative val-
ues [168], resulting in a loss of inter-tile concurrency (skewing in-
troduces inter-tile dependencies in the spacial direction). While it
might seem that this scheme always delivers better performances
than the simple single-iteration version, it really depends on a care-
ful selection of the skewing factor [163], as well as on the form of
the tile [168,188], which can be a major concern especially on FPGAs
[219]. Whit respect to the previously mentioned strategy, time skew-
ing can provide better cache hit rates and effectively reduce pro-
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cessor idle time caused by the ISLs’ memory boundedness [212] in
CPUs and GPGPUs.

As for the previous tiling strategy, even in this case blocks dis-
tribution among different processsing elements is possible [21], but
likewise single-iteration tiling, it requires explicit synchronization
between them, since a block must wait for its neighbors to complete
in order to have enough data to start. As a consequence, rather than
a purely parallel execution, in timeskewing blocks are executed in a
pipeline fashion.

A possible solution to mitigate time skewing’s adverse effects
when tiling along multiple iterations is proposed in [137], where code
transformation is performed to fuse the stencil loops together in or-
der to reduce the number of reads and writes, and increase both the
computational intensity and data reuse via loca buffers. While this
is an effective approach to cope with ISLs’ memory boundedness,
scaling their approach is not straightforward, as they focus only on
data reuse efficiency rather than scaling out the system. A very simi-
lar technique has been developed in [54], in which a domain-specific
compiler is proposed, namely Caracal, able to perform unrolling of
the time loop and fuse accordingly the stencils, with comparable ef-
fects as of [137].

Wavefront parallelization. Instead of pipelining the execution of
time-skewed blocks, wavefront parallelization dictates that blocks
must be scheduled collectively in a wavefront fashion [180, 196, 208].
Blocks are arranged in a way that on the time dimension the com-
putation blocks are independent from each other, thus not requir-
ing synchronization. Although in [163] this scheme has been ex-
plicitly defined as the one in which multiple blocks are scheduled to-
gether, this class can be easily extended to the case in which only
one block implements a single iteration. Indeed, this is exactly the
behavior exhibited when tiling is only applied on the time dimen-
sion [146, 175, 176]; this approach is promising as it has been proven
to scale [146, 175, 176] with low communication overhead. We draw
inspiration from this work and largely extend it to be able to build a
dataflow architecture customized around the specific ISL workload.

6.2.2 DSLs Based Optimizations

The exploitation of Domain Specific Languages (DSLs) and ad-
hoc frameworks has been explored as an interesting way to drive
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compile time optimizations by exposing specific, custom problem
semantics to compilers. While General Purpose Languages (GPLs)
are the dominating software development tools in HPC, the lack
of specialized language constructs and semantics to serve domains
such as ISLs is a limitation, since most of the times they do not allow
to express a problem in a manner that allows compilers to explicitly
and directly manipulate the code.

DSLs are certainly interesting, as they allow designers to define
a problem in a way that some features are explicitly signaled to the
compiler, allowing for whole kinds of aggressive manipulations, op-
timizations, and specific code generation techniques. However, this
comes at the cost of losing broad applicability, as they usually allow
the expression of a fairly limited set of algorithms.

Among ISLs-oriensted DSLs, PATUS [55] is able to achieve a high
performance by means of auto-tuning, targeting a different hard-
ware architecture, while Pochoir [193] provides a C++ template li-
brary based on a divide-and-conquer skeleton which is then trans-
lated into Cilk [44], a C/C++ extension designed for multithreaded
parallel computing. ExaStencils [122] employs a direct mathemat-
ical formulation (ExaSlang) of the problem, and through a series
of steps of transformations, included a wide range of polyhedral
model-based optimizations, generates target code in a specific lan-
guage, which by now is C/C++, but in the future could be extended
to other languages. DeLite [190] abstract from Scala with the aim
of making stencil programming easier, and use meta-programming
to construct an Intermediate Representation (IR) of the problem and
compile to a large number of languages, so that it can easily target
heterogeneous hardware. In [217], a single mathematical formula
is used to implement 3-D stencil codes on GPGPUs, via auto-tuning
and automatic target code generation, and GPGPUs is also the target
device of [107], in which low-level code is generated, starting from
an abstract representation, by trading an increase in the computa-
tional workload for a decrease in the required global memory band-
width. In [209] a single high-order function specified in Haskell, and
specifically in CλaSH [26], a functional HDL able to translate plain
Haskell (with some restrictions) into synthesizable VHDL, is used in
combination with a series of transformations to generate hardware
accelerators.

As a final consideration, although using DSLs can lead to good
performance, in HPC and industrial-grade high performance em-
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bedded systems this is not common at all, as GPLs are preferred due
to their versatility, ease of use, and vast availability of optimized li-
braries and components. Additionally, designers are usually famil-
iar with imperative languages like C or C++, which is a major lim-
itation towards the adoption of DSLs, which employ custom (and
non necessarily imperative) semantics; indeed, most available HLS
tools ship with support for C and C++. For these reasons, we adopt
a subset of C as our input language, and specifically a fragment of
it analyzable by means of the polyhedral model, in order to both
support an industrial-grade language, and to be able to heavily an-
alyze, restructure, and manipulate input codes in order to optimize
the resulting implementations, as we thoroughly describe in Section
7.4.

6.2.3 Custom architectures

When designing custom hardware, FPGAs can offer both high
flexibility and sustained performance with high energy efficiency,
often orders of magnitude better than other hardware platforms,
depending on the target workload. In fact, an increasing number
of works are focusing on exploiting FPGAs to implement ISLs with
the development of custom hardware, finely designed to efficiently
leverage the regular structure of this class of algorithms. Specifi-
cally, an adequate analysis and design of custom hardware has been
proven useful in mitigating the memory boundedness issue of sten-
cil computations.

In [169] for instance, a generic tunable VHDL template has been
proposed to parallelize 3-D stencil computations. Their work uses
the so called Full Buffering [126] in favor of Partial Buffering (which
is a strategy where solely the data needed by the current compu-
tation is stored to minimize memory consumption) a technique in
which data is stored on the on-chip memory until all the compu-
tations depending on it have completed, showing that the increas-
ing number of available resources in modern FPGAs allows to ob-
tain very good performances. However, this work has not been
thought of as streaming in nature, and most importantly it was not
thought of as a scalable solution (i.e.: runnable on multiple process-
ing elements with adequate memory and bandwidth considerations,
which we do in our work).

In [59] the polyhedral model is employed to take advantage of
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the stencil access pattern and perform non-uniform memory par-
titioning in order to generate a custom microarchitecture, stream-
ing oriented, which is proven to be optimal with respect to memory
usage, since it allows Full Buffering with the minimum number of
reuse buffer banks and minimum buffer size. This architecture has
only been simulated, without actual bandwidth and memory con-
sumption figures, the main bottleneck when scaling an architecture
to multiple computational elements. Additionally, the case in which
the computation has more than one input channel (a common situa-
tion in ISL computation) is not covered at all. There are however two
required considerations with respect to [59], that the proposed work
instead properly addresses (1) the proposed architecture is not able
to deal with ISLs with spatial dependencies among points updates,
(2) they don’t validate the proposed architecture in real test benches.
Consequently, they do not provide any insight on how well the so-
lution performs, also considering that estimated results do not effec-
tively take into account constraints such as available bandwidth.

The work of [177] consists of replicating the architecture demanded
to perform one time-step a number of times putting them in cascade,
i.e. the output of one architecture is the input of the next. The hard-
ware accelerator is a composition of soft-processors that must be ex-
plicitly programmed, hence it is a totally different approach with re-
spect to the one proposed in this work where an SST is an automati-
cally derived architecture. This work is the first proposing a method-
ology to construct the queue automatically, along with some con-
cepts, such as the queue looping, which are completely novel. In [116]
2-D stencils are addressed using ScalableCore, a system composed
of multiple, low end FPGAs, connected in a 2-D-mesh. To efficiently
exploit such an architecture, the stencil computation is tiled and each
computational block is assigned to an FPGA.Their work proves how
an FPGA custom architecture delivers an improved power efficiency
than traditional computing devices. However, the isolation of com-
putation on multiple computing elements effectively reduces data
reuse by a factor proportional to the number of elements, which is
a disappointing property when the goal is to scale out the system.
Moreover, ghost zones must be properly synchronized among pro-
cessing elements, leading to unnecessary (as we show in Section 7.4)
increase in on-chip bandwidth consumption.

In [182] a memory architecture is developed to implement sym-
metric 3-D stencils, i.e. of the form of n× (n+ 1)×n, which features
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FIFO queues for input and output streams (one for each dimension),
a data engine (the front-end) which prefetches data, a compute engine
(the back-end), which consists of multiple instances of the compu-
tation unit, and a control engine responsible for synchronizing the
flow of data in the whole architecture. While this work is interesting
for the customized approach to 3D stencil computation, the appli-
cability is limited to this class only; additionally, no explicit scaling
mechanism is reported. In our work, we extend the applicability of
our methodology to N-dimensional stencils and explicitly define a
scaling methodology.

6.3 This Work’s Contributions

From the context described in the previous section it is evident
that:

• The obtainable performance of parallelization-oriented tech-
niques can be bounded by the available bandwidth, due to the
increase in bandwidth demand consistently to the increase in
parallelism, but also for the consequent need for synchroniza-
tion of the parallel units. Hence, in most cases the achieved
performance can be far below the theoretical peak.

• The techniques designed to take advantage of the data locality
are not effective, mainly due to the inadequacy of the comput-
ing architectures on which they are applied.

• The scalability of ISLs in large-scale clusters is hard to achieve
and nevertheless the performance does not increase linearly
with the scaling.

• Although the employment of custom logic explicitly designed
to target ISLs could be promising, it is in general a hard task,
and it definitely needs automation in order to ease the process
and make it accessible to a broad user base.

To the best of our knowledge, the existing works do not address
all the presented issues, as they instead focus only on subsets of
them, resulting in suboptimal solutions that are not able to efficiently
cope with all the challenges posed by the ISL implementation. The
aim of this work is instead to address all the presented issues at once
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with the proposal of an hardware accelerator specifically designed
to target ISLs, indeed:

• We realized a distributed microarchitecture which exploits the
inherent parallelism of the distributed nature of an FPGA. Our
source of parallelism comes also from the employment of a
technique which enables a pipelined execution of multiple time-
steps within the accelerator, allowing to perform concurrently
multiple time-steps in one pass. The robustness of this tech-
nique comes from the fact that the increase in performance is
achieved without an increase in bandwidth demand, therefore
it is always possible to increase the throughput, even in the case
where the available bandwidth is very limited.

• The proposed memory system is designed to allow multiple
concurrent accesses – that is exactly what is needed in ISLs as
they compute using a nearest neighbour pattern, and avoid re-
source contention, a practical issue in the case of FPGA. An-
other important peculiarity of the memory system is the fact
that it is able to deliver full data reuse, thus reducing to the
minimum the amount of required communication with the off-
chip memory, realized with the minimum achievable on-chip
memory requirements.

• The previously cited technique that enables the execution of
multiple time-steps in one pass ensures linear scalability, with
constant bandwidth requirements. This allows to easily scale
without incurring in performance degradation, and can also
enable scaling over multiple FPGAs nodes, solving effectively
the problem of scaling in large clusters.

• The proposed hardware accelerator can be directly derived from
an imperative specification of the ISLs, e.g. an algorithm writ-
ten in C/C++. We indeed proposed a design automation flow,
which employ the PM to achieve this goal.

A detailed overview of the proposed solution will be supplied
in the next section. Let us however briefly summarize the thesis
contributions. In practice, we provide:

1. A streaming-based microarchitecture that implements a single
stencil time-step able to realize full data reuse with the mini-
mum on-chip memory requirements, the SST;
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2. A scalability-oriented technique able to deliver pseudo-linear
speed-up, namely SSTs queuing;

3. A methodology – a design automation flow - to automatically im-
plement ISLs with the proposed hardware accelerator.

6.4 A Scalable Streaming-based Microarchitecture for the Auto-
matic Implementation of ISLs

The work proposed in this thesis targets ISLs implementation
employing a custom hardware accelerator. For this purpose, we de-
veloped a streaming microarchitecture aimed at performing a sin-
gle ISL time-step, which we called SST. The entire accelerator is
represented by the composition of multiple SSTs in a queue fashion.
We then also proposed a design automation flow, to automate the SST
derivation and the queuing process.

In the rest of this section we provide the key points, a description
of the accelerator in all of its components, a set of constraints for the
input code of the proposed solution, and a comparison with existing
works.

6.4.1 Fundamental Principles

Let us first expose the fundamental principles on which the pro-
posed work rests its foundation.

Streaming Computation

Within the context of regular computations, such as ISLs, a stream-
ing paradigm is undoubtedly a well suited choice. The ability to
perform complete compile-time analysis allows to determine pre-
cisely the data flow, and as a consequence, to arrange the compu-
tation in the most effective way. A streaming computation model
is indeed a data-centric model, where the focus is on constant data
flow, granting high throughput, but nevertheless keeping low the
amount of needed resources, especially when the underlying archi-
tecture enables this kind of optimization. In the case of ISLs, where
the update of each grid point requires a number of concurrent reads,
this approach can avoid – or at least limit – the problem of memory
boundedness effectively reducing resource contention. Also, the dis-
tributed nature of a streaming model fits perfectly the distributed
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nature of a configurable architecture such as FPGAs, enabling the
exploitation of the inherent parallelism of those devices.

The reader may refer to section 4.2 for the technical details about
streaming systems on FPGAs.

Scalability

In assessing the quality of a system, scalability is absolutely an
essential parameter. The scalability issue is actually a hot topic, as
indeed a large amount of work, theoretically valid, are actually suf-
fering from a limited scalability or in the worst cases they do not
scale at all. Our work is focused on scalability, which is in fact ad-
dressed in two different and complementary ways:

• The accelerator itself is based on a scalable architecture. SSTs
are connected in a linear array that constructs a deep pipeline.
Because the depth of a pipeline does not influence the band-
width requirements, we can increase the computing performance
with a constant memory bandwidth by connecting more SSTs
for a longer queue, increasing consequently the throughput.

• For large problem sizes, whenever the available on-chip mem-
ory resources are not enough, the communication channels can
be removed and substituted with an off-chip memory inter-
face, thus increasing the bandwidth consumption while reduc-
ing the on-chip buffering requirements.

Optimal Full Buffering

When the memory resources were so limited that memory sys-
tems on FPGAs allowed storage of only a very small amount of
data, Partial Buffering (PB) was the only way to go. The principle
beyond PB is that data is fetched from external memory only when
it is needed, which means that, if needed multiple times, the same
data is transferred more than once. This technique allows to keep
low the resource usage, but also the overall performance, as it im-
plies repeated reads for the same data from off-chip memory, conse-
quently resulting in the waste of clock cycles.

Modern FPGAs have now enough resources to allow, when the
computation is performed on reasonable problem sizes, the employ-
ment of Full Buffering (FB), a technique in which data is read only
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once and stored on the on-chip memory until all the computation re-
lying on it has completed. The advantage of a FB scheme is that, at a
cost of an increase in scratch-pad memory requirements, the off-chip
traffic is reduced to the minimum.

An SST is able to perform FB in an optimal way, employing the
PM to perform non-uniform memory partitioning of the input stream.
The compile-time analysis allows to compute the minimum size of
the reuse buffer for a data array, which is indeed equal to the maxi-
mum lifetime of any element in the array itself. In this way an SST
can deliver FB with the minimum number of buffer banks (repre-
sented in the architecture as communication channels), were each
of them have also the minimum possible size.

Wide Applicability

A lot of existing works focus only on ISLs without spatial dependen-
cies between grid points within the same time-step (see section 4.6.1),
mainly because it is difficult to extract parallelism from those algo-
rithms. Hence, they intentionally limit their applicability, as their
solutions are not suitable for this kind of ISLs.

We instead treat indiscriminately both ISL types, as our method-
ology leverages a streaming-based computation and the performance
gain is given by the pipelining of multiple SSTs. Our source of par-
allelism is indeed implicitly given by the distributed organization
of the mircoarchitecture, which in turn takes advantage of the dis-
tributed nature of FPGAs.

As last remark, even though a proper restructuring of the input
stream could remove this limitation, it must be said that our method-
ology does not target ISLs with periodic boundary conditions. This is
indeed a limitation shared by a lot of available works, since those
kind of ISLs are not as common as the one with constant boundaries.

Automatic Process

As stated in the previous section, hardware design is an hard
task and, if it is done by hand, also error prone. For this reason we
proposed an automated design flow, able to generate the accelerator
directly from the input source code. This flow will be detailed in the
next chapter.
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6.5 A General Overview of the Proposed Microarchitecture

Hardware acceleration is one of the techniques used to improve
performance of a computing system. It consists of offloading the
general purpose processor from the computationally intensive part
of a given algorithm, that can rely on computer hardware specifi-
cally designed to perform those computations. The proposed mi-
croarchitecture precisely embodies this logic, as it is indeed an hard-
ware accelerator. This means that it requires a host processor to drive
the execution and control the in and out data flow.

From a general perspective, the proposed microarchitecture can
be viewed, at every level of granularity, as a composition of indepen-
dent modules, that communicate over FIFO channels and employ
blocking reads and writes to manage the data flow and ensure its cor-
rectness.

At the top level, the accelerator consists of a series of blocks ar-
ranged in a queue fashion, each of which is responsible for the exe-
cution of a single ISL time-step. Those blocks are called Streaming
Stencil Time-step (SST), a name we chose as it recalls exactly their
functionality. Since the microarchitecture is streaming-based, data
flows from an SST to another as soon as it is produced, resulting in
a pipelined execution of the entire computation. In some occasions
the SSTs data flow can be managed by an additional module, which
is always aware of the progress of the computation as well as the to-
tal number of iterations to be performed, which we called mux. This
happens in two cases (which can also occur together):

• the number of SSTs - and hence the corresponding number of
time-steps - of the hardware accelerator are not an exact divider
of the total number of iterations. In this case the mux is respon-
sible to break the computational flow when the total number of
time-steps of the ISLs is performed, and redirect the output to
the off-chip memory.

• the queue length is large enough to be able to cycle the data
flow, redirecting the output stream of the queue back to the
queue itself, instead of transferring it back to the off-chip mem-
ory. We called this condition queue looping, which will be fur-
ther detailed in the next section. In this case the mux is respon-
sible to break this loop when the total number of time-steps has
been executed.
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Table 6.2: The high level scheme of the proposed hardware accelerator. The three
different versions represent the three distinct described cases: the first (a) is the
standard case, the second (b) is the case in which the queue length is not an
exact divisor of the total number of ISL time-steps, the third (c) is the case in
which there are enough available resources to enable queue looping.
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Now that we have described the accelerator from a high level,
the only thing that remains to detail is how an SST is actually imple-
mented. We already claimed that an SST is demanded to execute a
single ISL time-step, let us now describe its internal components.

As first thing, an SST in general has one input stream and one
output stream. In the case in which the ISL updates grid points em-
ploying constants or other arrays, the input streams are obviously
more than one. The components within an SST can be divided into
two main categories, the first being the memory system, the second
being the computation system.

Table 6.3: A general scheme of an SST.

6.5.1 Memory System

This part of the SST consists of a series (or one, when the input
is just the single stencil array, i.e. the one updated from the ISL) of
chains of modules connected by FIFO channels, one chain for ev-
ery distinct input array, all responsible to feed the computation sys-
tem with the needed data. Each chain receives a single data stream,
which is indeed the array itself, and the modules within the chain
represent the different read array references. Trivially, if the array
reference is unique, the chain is made up of a single element. These
modules are indeed the one actually responsible of sending the data,
as in fact they read any existing data element from their preceding
FIFO and send the data element to the successive FIFO as well as
to the computational system. From a high level perspective, this ar-
rangement can still be viewed as a single stream, from were each
module filters data only when needed, which is why we called them
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filters. The chain-like organization of filters ensures that the data
is read only once and at the same time allows more concurrent ac-
cesses, realizing also the optimal FB.

6.5.2 Computation System

The computation system is composed of a series of modules that
perform the actual computation taking data from the memory sys-
tem. However, there are some further considerations to make to
better understand how they are arranged.

First of all, given the fact that ISLs update grid points using a
nearest neighbour pattern, it is evident that there is always the pres-
ence of the boundary to take into account. This condition can cause
performance loss when hardware accelerators are employed, as the
host processor could be forced to waste time to reconstruct the array
from the output. For this reason, our SST consider the boundary in
an explicit way. This is indeed also a prerogative for the SSTs queu-
ing. In fact, since the accelerator consists of a chain of replicas of
a single SST, it is obvious that within an SST both the output and
the input must be of the same form. To accomplish that, the last
computing module will always be decomposed into two parts: one
demanded to compute the ISL output, which we may refer to as com-
putation part, and one which transfers the boundary of the grid from
the memory system (without applying any computation, as there is
none insisting on that portion of the grid). To ensure that the output
stream is rearranged in the exact same form of the input, we inserted
an additional module, called demux, whose function is precisely the
one just stated.

There is also another possibility, that can lead to a further de-
composition of a computation part, that is the presence of spatial de-
pendencies between grid points. This situation will be addressed in
detail in the next chapter, however we anticipate that the compu-
tation part will be decomposed in more than one equivalence class,
that realize the computation considering the presence of these de-
pendencies. A demux will be added also in this case, for the same
reasons as of the boundary.

We previously claimed that an SST has in general a single output
stream. This is true in most cases, but not when performing queuing
with an ISL that takes multiple array as input, i.e. which has variable
coefficients. In fact, to provide the data required to all the SSTs, ad-
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Table 6.4: An SST for ISLs with spatial dependencies.

ditional streams must be added, in order to transfer the input data
within the queue. In this case then, the filters chains refer to arrays
which are not the output one are equipped with an additional com-
munication channel, used to drive those data to the next SST in the
queue. This is obviously not true for the last SST.

Table 6.5: An example of the accelerator for an ISL with multiple inputs. The
green arrows represent the additional streams. As described in the text, the last
SST has only the actual output stream.

6.6 Some Considerations on the Input Code

We already stated in section 6.4.1 that our solution targets indis-
tinctly ISLs with or without spatial dependencies. There are how-
ever some considerations to make about the input code to allow the
proposed design automation flow to work properly:

1. The algorithm must be specified in an imperative form, e.g. C/C++.
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Also, it must fall into the category of SANLPs, which is indeed
the case for nearly every ISL;

2. There is virtually no limit on the input problem size. Even if
the available resources are not enough to handle large arrays,
there is always a bandwidth/buffers trade-off that can be made
to solve the issue. This case will be further inspected in the next
chapter.

3. Even though multiple inputs are allowed, the actual output
must be the only stencil array, i.e. the one updated from the ISL.
In a nutshell, this means that whenever the ISL contains more
than one statement, they must be assigned on the same array
(the stencil one though). The only case in which statements
with assignment on different arrays can happen, is when those
statements are in a dependence relation, i.e. the array updates
of one statement Si are read subsequently by another Sj. Even
in this case the actual output is only one, indeed the array up-
dated by the statement Sj. Hence, array updates of Si - that can
be thought as “intermediate” results - which are not used by
Sj, will be still present in the internal data flow of an SST, but
not forwarded.
Such a restriction is indeed necessary to derive effectively the
SST. However, it is important to notice that this condition is
not at all restrictive, as loop nests that do not have this single
output feature are not proper ISLs.

4. Conditionals which are affine functions of the time dimension
indices are admitted, but require a pre-processing phase, as
will be described in the next section. Instead, conditionals on
the array dimensions indices are not allowed, as indeed a code
with such a structure would not be a proper ISL.

5. Array sizes are inferred by the polyhedral analysis. This is per-
fectly possible, given that the stencil array accesses map their
data space also on the boundary. If the array is bigger than
the computed dimension - loop nest and boundary conditions
- the design automation flow should be assisted with additional
information, e.g. specific pragmas. The situation in which ar-
rays are bigger than the computed size is however very un-
likely to happen, as boundary are present only to ensure the
algorithm correctness. In the general case, there is no need to
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have boundaries bigger than the one employed in the compu-
tation, as they would be unnecessary information, and by the
way also a waste of memory space.

6.7 A Comparison with Existing Works

The work proposed in this thesis, from a high level perspective,
can be analyzed from three different point of views: the automated
PM-based C-to-FPGA flow, the streaming-based SST microarchitec-
ture that targets ISL with a memory system able to achieve full data
reuse, and the exploiting of the time-iterative nature of ISLs with
the SSTs queuing to overcome the memory boundedness. The goal
of this subsection is to compare the proposed work with the works
that, as far as we know, appear to be the leading in each of the three
different aspects.

6.7.1 PM-based C-toFPGA flow

Although HLS have seen an intense evolution, as already de-
scribed in section 4.3, such that today’s HLS tools are capable of gen-
erating high quality Register-Transfer Level (RTL) code for a wide
range of input programs, they still lack the ability to exploit all the
available performance enhancement opportunities, especially for SANLPs.
In particular, the essential limitation is given by the absence of a
structured approach to efficiently manage data movements from off-
chip to on-chip memories, which by default are completely left in the
hand of the software designer. The PM can be effectively exploited
to overcome this issue, and in fact a number of C-to-FPGA frame-
works have been proposed, in particular [124, 159] and [219], which
employ the PM as optimizing engine. The aim of all these works is
to mask the off-chip transfer latency managing to intrinsically over-
lap communication and computation. However, they are not always
able to achieve the desired results, mainly because of the way they
use HLS. As a matter of fact, they use HLS only as a back-end for
their optimizations, instead of focusing on the real issue, namely the
production of an efficient accelerator which leverages the real capa-
bilities of the underlying hardware.

The work of [159] uses tiling hyperplane transformations to ex-
pose data locality as much as possible, and then carefully manages
on-chip buffers to enable data reuse and pre-fetching. The gener-
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ated code is then further optimized to be used for HLS. This work
has been implemented in a toolchain, named PolyOpt/HLS. PolyOp-
t/HLS is able to realize data reuse only among subsequent iterations
of a loop, although for a given loop nest the depth to which data
reuse is exploited - i.e. which two successive iterations are used - can
vary. This is indeed a limitation, since the framework does not nec-
essarily capture all the reuse potential in a loop nest. In particular,
reuse between two non-consecutive iterations is not exploited at all.
Even though they claim that this should not be a huge limitation,
this is indeed not true, since when access patterns are of the form
of ISLs, their technique can fail completely the task of alleviating
the memory boundedness issue. Also, when reuse opportunities are
only between non consecutive iterations, the quality of their results
can be unsatisfactory with respect to the goal of achieving efficient
data reuse. Although in the later work of [124] PolyOpt/HLS has
been extended with optimizations tailored to solve the resource con-
tention on memory bank ports and achieve an initiation interval of
1 clock cycle on pipelined kernels, two points of failure of the initial
work, they admit that with certain kind of data access patterns they
still fail to achieve optimal results.

In [219] the authors extend the state-of-the-art framework PoCC
[12] ( a framework for polyhedral optimizations which wraps all the
most relevant state of the art tools and libraries ) in order to:

• Use their PM-based methodology to extract inter-block and intra-
block parallelism and pipelining,

• Produce HLS ready code with all the needed directives,

• Generate the communication interfaces (generally FIFOs) be-
tween computation and communication blocks.

Their methodology consists of a set of loop transformations to obtain
desired data dependencies between iterations (unimodular transfor-
mation), they then utilize a cost model to estimate which transfor-
mation is the best in the application context - FPGA resources, type
of dependencies and communication costs - and produce the corre-
sponding scheduling. This work is however restricted to the case
in which the loop nest dimensionality and array dimensionality are
equal for all sets of blocks in the program. This is actually a re-
striction that dramatically limits the applicability of the proposed
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methodology, as for instance we experimented that all the bench-
marks of PolyBench/C [152], the benchmarking suite for PM-based
optimizations, cannot be treated with the proposed framework. The
only case in which it could be applied is for a subset of the ISLs
benchmarks, namely adi, jacobi-1D, jacobi-2D and seidel, and only if
the outermost loop - i.e. the time dimension - is removed from the
original code. They essentially claim that their methodology is in
general applicable to SANLPs, but the reality is that it can only be
applied to a very small subset of them, not even all ISLs.

Even though our application domain is smaller - but not that
much - with respect to the entire class of SANLPs, an aspect that
must be considered for the comparison, there is an essential differ-
ence between the two aforementioned C-to-FPGA flows and the one
proposed in this thesis. We indeed employ the PM not to transform
the input source code to be “HLS-friendly”, but instead to realize an
hardware accelerator able to exploit efficiently the available hard-
ware resources and perform optimal FB. In our case, the HLS is not
our target, it is instead a link to connect the polyhedral framework
and the hardware design.

6.7.2 SST microarchitecure

There are essentially two architectures that can be compared with
the one realized from the SST. The first comparison can be made
with the work in [59], which by the way has been a starting point of
the one proposed in this thesis. Indeed, from a functional point of
view the chains within the SST’s memory system share some similar-
ities with the working principles of [59], even if technically they are
implemented differently. There are however two observations that
have to be made, since the work in [59] is lacking in two aspects, that
the proposed work instead properly addresses:

• the proposed architecture is not able to deal with ISLs with spa-
tial dependencies among points updates, e.g. the Gauss-Seidel
method, for which the PolyBench/C version has been employed
as benchmark in the experimental section.

• they never validate the proposed microarchitecture in real test
cases. Consequently, they do not provide any insight on how
well it performs, considering also that estimated results do not
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take into account practical constraints such as the available band-
width.

The second comparison can be made with Maxeler [9]. Maxeler is
indeed an FPGA-based heterogeneous system, where the accelerator
has to be implemented with a dataflow specification, i.e. a Dataflow
Engine (DFE). Maxeler’s computing system includes CPUs and DFEs,
and DFEs configurations are created using Maxeler’s MaxCompiler.
To create applications exploiting DFE configurations, an application
must be explicitly split into three parts:

• Kernel, which implements the computational components of
the application in hardware.

• Manager configuration, which connects Kernels to the CPU,
engine Random Access Memory (RAM), other Kernels and other
Dataflow Engines via a custom interconnection (MaxRing).

• CPU application, which interacts with the dataflow engines to
read and write data to the Kernels and engine RAM.

From an architectural point of view, the structure of our accelera-
tor is similar with the one obtainable with Maxeler - a Maxeler’s
DFE - on the specific application domain of ISLs. There is however
an essential difference between Maxeler and the work of this the-
sis: in the case of Maxeler, the software designer must have a deep
knowledge of the Maxeler system, of the Maxeler language, which
is an extended version of Java, called MaxJ, and nevertheless a deep
knowledge of the general structure of a dataflow architecture, as it
must specify the accelerator behaviour in an explicit way. Hence,
there is a learning curve and a required expertise that is but easy to
attain: being able to implement complex program can be an hard
and time consuming task. On the other hand, our methodology is
able to extract the accelerator from plain C/C++, with the restric-
tions specified in section 6.6, automatically.

6.7.3 SSTs queuing

The exploitation of the time dimension in order to increase the
performance is not a new idea, there are indeed a few works in
which this is done effectively. The key idea is to exploit the itera-
tive nature of ISLs and the temporal locality in order to reduce the
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amount of communication with the memory, resulting in an alle-
viation of the memory bandwidth issue. There are two techniques
which employ this idea in two different ways, that can be thought
of as “software” and “hardware”.

In the software version the original ISL is rewritten to merge two
or more time-steps into a single update by expanding the stencil for-
mula along the time dimension. This is done in both [137], where
the target is hardware design, and [54], where the target is canonical
CPU-based architectures. In [137], the code restructuring can how-
ever lead to ports contention on memory banks, due to the enlarge-
ment of the stencil windows and the resultant increase of required
concurrent accesses on the memory banks, a problem that cannot
occur in the case of an SST where the memory system is exactly de-
signed to allow multiple concurrent memory accesses. In [54] the
lack of awareness of the memory subsystem in the transformation
process limits the applicability to x86 CPUs only. As important re-
mark, it must be noticed that both works propose and implement an
automatic flow to perform this software restructuring.

The hardware version, which as the name suggests is related to
hardware accelerators design, consists of replicating the architecture
demanded to perform one time-step a number of times putting them
in cascade, i.e. the output of one architecture is the input of the next.
This is the idea employed in this thesis, and is also proposed in [175],
where the hardware accelerator is a composition of soft-processors
that must be explicitly programmed, hence it is a totally different ap-
proach with respect to the one proposed in this thesis where an SST
is an automatically derived microarchitecture, and in [94], where it
is analyzed only from a theoretical point of view. Although the idea
is already present in the state of the art, the work of this thesis is the
first that propose a methodology to perform it automatically, along
with some concepts, such as the already cited queue looping, which
are completely novel.

6.8 Overview of the Methodology

We propose a methodology to derive an hardware accelerator
designed to target a specific ISL. The hardware accelerator can be
viewed, at every level of granularity, as a composition of independent
modules, that communicate over FIFO channels and employ block-
ing reads and writes to manage the data flow and ensure its correct-
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ness. In particular, we developed a streaming architecture aimed
at performing a single ISL time-step, which we called SST (the en-
tire accelerator is represented by the composition of multiple SSTs
in a queue fashion). We then also proposed a design automation flow, to
automate the SST derivation and the queuing process. This design
automation flow is basically a 2-step process. The first step consists
in deriving the microarchitecture that is demanded to implement a
single iteration – i.e. a time-step – the SST. This can be viewed as the
basic building block of the accelerator. The second part addresses how
to actually building the complete accelerator, in which SSTs are ar-
ranged in a queue fashion, realizing an effective and explicit stream-
ing, scalable mechanism. It takes as input the ISL’s Static Control
Part, written in an imperative form (e.g. in C/C++), and produces
the corresponding accelerator. The proposed flow prepends to the
aforementioned steps a pre-processing phase, in which the so called
Reduced Static Control Parts (rSCoPs) are extracted. Both the pre-
processing phase as well as the first macroblock heavily rely on the
polyhedral framework, as most ISLs, due to their staticness and regular
structure, can be viewed as a subset of the class of programs known
as SANLPs. We restrict ourselves to treat only the ISLs enjoying this
property. An overview of the proposed flow can be seen in Figure
6.6.

Let us briefly describe the two macroblocks of the proposed de-
sign automation flow. The first macroblock is the SST microarchitec-
ture derivation, and is composed of the following parts:

• The first part performs the polyhedral analysis in order to ex-
tract a polyhedral IR of the input code, and also the corre-
sponding Data Dependency Graph, which is crucial for the en-
tire SST derivation process;

• The second part consists of an ad hoc manipulation of the ob-
tained Data Dependency Graph in order to obtain the skeleton
of the SST, which we call streaming-oriented graph;

• After that, two concurrent phases take place. Both phases em-
ploy the polyhedral IR along with the streaming-oriented graph,
and their function is to further caracterize respectively the mem-
ory system and the computing system of the SST.

The result of this process is an IR of the derived SST, which is used to
generate the code of the modules that will be synthesized via HLS.
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Table 6.6: The Proposed Design Automation Flow. Each steps are described in
Section 4 and 5.
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The second macroblock is the SSTs queuing, that employ the es-
timated resource usage of an SST and the total amount of available
resources in order to derive the maximum achievable queue length
and generate the final RTL of the resulting hardware accelerator.

As a final remark, it can happen that the ISL’s SCoP contains con-
ditionals which are affine functions of the outermost loop, that is in-
deed the time dimension. In this case, the code must be transformed
beforehand, as a conditional on the time dimension means that only
certain code parts are executed within a time-step, i.e. code parts ex-
ecute in a mutually exclusive manner, and when deriving the SST,
this situation is unacceptable. To deal with this case a solution is
to apply the index-set splitting transformation along the outermost
loop only. The affine conditionals can be used to effectively drive
the splitting on the original loop nest, and after the transformation
is performed it can be safely assumed that the conditionals can be re-
moved from the obtained code. The result of this process is a series
of loop nests, each one iterating over a subset of the original itera-
tion vector of the time dimension. We call them rSCoP, since they
actually still belong to a single SCoP, but despite this we treat each
of them individually.

6.9 Proposed Architecture: the Streaming Stencil Time-step

A SST is demanded to execute a single ISL time-step and has in
general one input stream and one output stream. In the case in which
the ISL updates grid points employing constants or other arrays, the
input streams are more than one. The components within an SST can
be divided in two main categories, the first being the memory system,
the second being the computing system.

The Memory System consists of a series of chains of modules con-
nected via FIFO channels, one chain for every distinct input array, all
responsible for feeding the computing architecture with the needed
data. Each chain receives a single data stream – which is the array it-
self – and the modules within the chain represents the different read
array references. These modules are the ones actually responsible
of sending the data, as in fact they read any existing data element
from their preceding FIFO and send the data element to the succes-
sive FIFO as well as to the computational system. From a high level
perspective, this arrangement can still be viewed as a single stream,
from were each module filters data only when needed, which is why
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Table 6.7: In Figure (a): an example of SST resulting from the sample code on the
left. Each array relates and belong to a chain and each array reference corre-
sponds to a new module inside this chain, as shown by the red arrow in figure.
Each SST computes the code associated to a single, specific timestep. In Fig-
ure (b): The architectural template of the accelerator for an ISL with multiple
inputs. The complete hardware accelerator is the composition of multiple SSTs
as of Figure (a) arranged in a queue fashion. The green arrows represent the
additional streams. As described in the text, the last SST has only the actual
output stream.
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we called them filters. The chain-like organization of filters ensures
that the data is read only once and at the same time allows more
concurrent accesses, realizing also the optimal Full Buffering.

Computing System It is composed of a series of modules that per-
form the actual computation taking data from the memory system.
Let us now provide some further details to better understand how
they are arranged. Given the fact that in the case of ISLs there is
always the presence of the boundary to take into account, there is
the possibility of performance loss when hardware accelerators are
employed, as the host processor could be forced to waste time to
reconstruct the array from the output. For this reason, our SST con-
sider the boundary in an explicit way. This is also a prerogative for
the SSTs queuing. In fact, since the accelerator consists of a chain of
replicas of a single SST, within an SST both the output and the input
must be of the same form. To ensure that the output stream is rear-
ranged in the exact same form of the input, we inserted a module –
in addition to the modules that actually performs the computation –
called demux, whose function is precisely the one just stated.

An SST has in general a single output stream. This is however
not true when performing queuing with an ISL that takes multiple
array as input (Figure 6.7). In fact, to provide the required data to
all the SSTs within the queue, the SSTs are equipped with additional
output streams, i.e. additional communication channels from the in-
volved filter chains towards the next SST in the queue, other than
the one that drives the proper accelerator’s output. This is not true
for the last SST, which does not have the added output streams as
they are not needed. As shown in Figure 6.6, the first part of the
proposed design automation flow is the derivation of the SST from
the input rSCoP. Let us now describe the different phases that takes
place within this macroblock.

6.9.1 Streaming-oriented Graph Construction

The purpose of this first phase is to construct a graph, namely
streaming-oriented graph, which will be used as a skeleton for the
SST. We use this approach as it can be automatically built on top
of the already available tools of the polyhedral framework. Also,
streaming architectures can be effectively represented as a graph,
therefore a graph-like representation of the SST microarchitecture
fits perfectly with its streaming nature – and eases the process of
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information manipulation during the SST derivation. The first task
that must be performed is the data dependency analysis, in order to
produce, for a given rSCoP, the corresponding Data Dependency
Graph. The only dependencies that must be taken into account are
the RAW dependencies, as an SST can be viewed as an in-order mi-
croarchitecture. After that, the Data Dependency Graph must be
further pruned: the dependencies carried by the time dimension –
i.e. the outermost loop – must be discarded, since, as stated before, an
SST is demanded to implement the execution of a single time-step.
There is however a case in which an edge on the time dimension can
remain after this pruning task. This situation can occur whenever
the rSCoP loop nest is imperfect, because flow dependencies within
the same time-step could be carried exactly along the time dimen-
sion. As a result, we can define the following conditions for an edge
to be removed during the pruning task:

Definition 32. Data Dependency Graph Edge Removal Conditions.
Let us consider a Data Dependency Graph G = (N,E), with only RAW
dependencies, in which each node N is marked with a growing number
given by the execution order of each statement, that, by the way, in the case
of an rSCoP corresponds also to the syntactic order. For the process of
the streaming-oriented graph construction, an edge E must be removed
if it represents a dependence carried along the outermost loop (time
dimension, and E is a self-loop or is directed from Ni to Nj and i > j.

After that, each node (i.e., a statement) of the Data Dependency
Graph is expanded in the following way:

1. Each array reference becomes a new node. Since for each array
assignment – i.e. statement – the polyhedral analysis (indeed,
the parsing step taking place at the beginning) is able to iden-
tify the read and write operations, we employ this information
to connect these nodes. Specifically, each read node of the given
assignment will have an outgoing edge connected to the corre-
sponding write node, as the write operation trivially depends
on these data. Furthermore, read nodes with the same array
reference are merged. Note that the write nodes symbolically
represent the execution statement, hence, they are associated
with the statement’s assignment – i.e. formula – and its itera-
tion domain.

2. The original edges of the Data Dependency Graph are now
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connected, rather than with the entire statement, to the spe-
cific node – i.e. array reference – involved in the corresponding
dependence.

The last step towards the construction of a streaming-oriented graph
consists in an iterative removal of the “copy” dependencies, i.e. an
outgoing edge from the write node W of a statement entering an-
other node N , such that:

• N has no outgoing edges which enters backW, causing a cycle;

• ifN is a read node, the corresponding write node must not refer
to the same array asW;

• if N is a read node, its data domain – i.e. the image of the corre-
sponding statement iteration domain on the reference subscript
function – matches the iteration domain ofW;

• if N is a write node, its iteration domain is the same as ofW.

Notice that this reduction can only be made if the aforementioned
write nodeW does not have other outgoing edges. This operation is
described by the pseudocode of Algorithm 10. The obtained graph

Algorithm 10: Iterative Reduction of the Streaming-oriented graph
Input: the streaming-oriented graph G = (N,E)
Output: the reduced version of G
R = 0; foreach write node N ∈ G do

if N has only one outgoing edge E∧ E is directed to a node N ′ in a “copy”
dependence relation then

R← R ∪ (N,E,N ′);
end

end
while R 6= 0 do

remove r = (N,E,N ′) from R; substitute the reference to N in N ′ with N
assignment’s formula; create a new write nodeW with the same formula
of N ′; substitute r in Gwith the single nodeW;
ifW has only one outgoing edge E∧ E is directed to a nodeW ′ in a “copy”
dependence relation then

R← R ∪ (W,E,W ′)
end

end

is the skeleton of the SST microarchitecture, and we call it streaming-
oridented graph. In order to have the IR of an SST, from this graph
both the computing system and the memory system must be properly
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characterized. In the following two sections we will explain the pro-
cedures to achieve this goal.

6.9.2 Computing System Extraction

The streaming-oriented graph provides us the write nodes that
effectively become computation modules of the computing system.
Since the streams entering the filter chains of the memory system must
be in the form of the entire array, the boundaries must be explicitly
managed. To do so:

1. Firstly, we make an important remark: the array updated within
the statement with the highest index – i.e. the last in the syntac-
tic order – must be the array updated by the ISL. We employ
this information to explicitly identify the output array (stream)
of an SST, as the one updated from the last write node;

2. A demux D is instantiated and associated to the last write node
L such that L → D. How the boundary is actually managed is
explained in 6.9.3;

3. The streaming oriented-graph is traversed, and each node N
whose statement updates the same array of L, is also associ-
ated to D, i.e. N → D. If more than one write node is asso-
ciated to the same demux, this means that there are different
portions of the array which will be updated with different for-
mulae. We call these portions equivalence groups. Since the write
nodes are indeed responsible for the update of these regions of
the array space, we will indistinctly refer to both regions and
corresponding write nodes as equivalence groups. Let us now
introduce the definition of an equivalence group.

Definition 33. Equivalence Group. An equivalence group is the
maximal set P of points of a given array, updated within the ISL
computation, such that each point of P has the same update formula
and is dependent on the same set of filters.

4. The process is repeated with all the remaining write nodes,
whose array updates won’t be forwarded as output of the SST.
They will be only needed to ensure the correctness of the com-
putation of an SST.
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After the pruning task of the Data Dependency Graph previously
described, the only kind of cyclic dependencies that can be present
are statement’s self-dependencies. When deriving the streaming oriented-
graph, this translates into cycles between a given write node and
some of its input read nodes, indicating the presence of spatial de-
pendencies between grid points. In this case, the write nodes in-
volved in these cyclic dependencies further require manipulation.
From now on we will refer to the write nodes that enjoy this char-
acteristic as cyclic-write nodes, and the read nodes which concur in
the cyclic dependency as cyclic-read nodes. First of all, we claim that
this cyclic dependencies can only involve read nodes whose subscript
function is not of the form f(~x) = I~x (being f(~x) = F~x + ~a where the
subscript matrix F is the identity matrix I, and ~a = 0). This condi-
tion is trivially enforced by the fact that these dependencies are be-
tween subsequent integral points of the iteration domain. Therefore
a cyclic-read node data space (also called data domain) - i.e. the image
of the cyclic-write node iteration domain on the reference subscript
function - will always partially overlap with the boundary. Hence,
since part of the data space of the cyclic-read node will come from
the boundary and part from the cyclic-write node’s output - i.e. two
distinct data streams - the cyclic-read node will be actually imple-
mented as two distinct filters, each belonging to a different chain.
The result is that the iteration domain of each cyclic-write node is
partitioned into subsets which are dependent on a different set of
filters, even if the formula is actually the same. Hence, they are in-
deed different equivalence groups, as previously defined, even though
we will refer to them as sd-equivalence groups (the prepended “sd”
stands for spatial dependence), to differentiate them from the previ-
ously derived one. To partition the original cyclic-write node iter-
ation domain, we need two basic information, namely the iteration
domain of the sd-equivalence groups – each of them being a parti-
tion of the original iteration domain, and the set of input filters of
each sd-equivalence group. The extraction of this information re-
quires a specific algorithm, whose pseudocode is presented in Al-
gorithm 11. An important precondition for the applicability of the
algorithm is that the operations of intersection and difference between
polyhedra can be performed by employing the state of the art li-
brary isl [201], a library for manipulating sets and relations of in-
teger points bounded by linear constraints. The result is the set of
sd-equivalence groups with the associated input filters and iteration
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domain. Note that the read nodes which are not cyclic-read nodes
are implicitly input of each sd-equivalence group, as they are indeed
implemented as a single filter. The complexity of the proposed al-

Algorithm 11: sd-Equivalence Groups Extraction
Input: I: the iteration domain of the cyclic-write node w.
Input: A: set of cyclic-read nodes ai = (fw, fnw), with a subscript function fai

.
fw represents the part of the data domain which overlaps with I, while fnw

represents the part which overlaps with the boundary.
Ouptup:E: set of equivalence groups e = (ie, re), where ie is the iteration
domain and re the set of input fw.
E← 0; P ← 0; {P is the set of the preimage portion of each ai that overlaps with
I}

foreach ai ∈ A do
Dai

← fai
; S← Da,i ∩ I; pai

← (f−1
ai
(S), ai) {the first element of the tuple is

the preimage, the second is the identifier}; P ← P ∪ pai
;

end
i0 ← ∩ipreImage(pai

), pai
∈ P; E← E ∪ e0 = (i0, F = {fw(ai) |∀ai ∈ A});

i1 ← I− (∪ipi, pi ∈ P);
if i1 6= 0 then

E← E ∪ e1 = (i1, 0);
end
while P 6= 0 do

paj
← firstElement(P); Temp← P − paj

; inew ← preImage(paj
);

rnew ← 0; rnew ← rnew ∪ fw(identifier(Pai
));

while Temp 6= 0 do
tak
← firstElem(Temp); Temp← Temp− tak

; iold ← inew;
inew ← inew ∩ preImage(tak

);
if inew = 0 then

inew ← iold;
else

rnew ← rnew ∪ fw(identifier(tak
));

end
end
foreach pai

∈ P do
preImage(pai

)← preImage(pai
) − inew;

if preImage(pai
) = 0 then

P ← P − pai
;

end
end
E← E ∪ e = (inew, rnew);

end

gorithm is O(n2) in the worst case, where n is the number of cyclic-
read nodes. However, in real world cases, n is always small enough
for the algorithm to terminate in a reasonable amount of time(e.g. in
our benchmarks n has been no more than 4). It is also important to
point out that this is, as far as we know, the first algorithm that en-
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ables to automatically implement with an hardware accelerator ISLs
with spatial dependencies between grid points.

6.9.3 Memory System Derivation

In order to characterize the memory system, the following steps
have to be performed for each write node:

1. The cyclic-read nodes - whenever present - are implemented
as two different filters, for the previously described reasons
in subsection 6.9.2. The remaining read nodes will be imple-
mented as a single filter. Filters are then clustered according
to both the corresponding array name and the input stream -
e.g. whether it is the output of the write node or not - to obtain
the so called chains.

2. Whenever a chain contains more than one filter, those filters are
ordered from the lexicographic maximum, to the lexicographic
minimum. The input stream will enter the maximum flow fol-
lowing the reverse lexicographic order, down to the minimum,
which means that those filters are linked together by the input
stream. The sizes of the communication channels are computed
as the modulus of the data distance vector of a fixed and common
- but nevertheless arbitrary - iteration between the subscript
functions of the two filters. Following the principles of [59], we
can define the conditions for the proper structuring of a chain
as:

Definition 34. Chain Structuring Conditions. A chain of ordered
filters
{f1 → f2 → ... → fn} related to an array A must be compliant to
the following two rules in order to have Full Buffering being also be
deadlock-free:

• For every couple fi and fj such that i < j, then
fi �l fj

• The size W of a communication channel between a filter fi with
subscript function f iA and a filter fj with subscript function f jA
must be

W > | δ(ν,ν)f iAf jA
|

IfW is minimal ( = ), the Full Buffering is also optimal.
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3. As stated before, there is also the boundary of the output array
to consider. Within the chain referring to the same array up-
dated by the write node (in the case in which the ISL has spa-
tial dependencies the chain considered is the one that does not
take as input stream the write node’s output), the filter – whenever
present – whose data domain perfectly overlaps with the iter-
ation domain, i.e. for which the subscript function is f(~x) = I~x
(intuitively, this is the “central” node of the chain), will be the
one demanded to route the boundary towards the demux. If
this node is not present (i.e. the update of a grid point is per-
formed without reading its previous value), it will be added
and its functionality will only be to route the boundary.

4. Each remaining communication channel, indeed every channel
within an SST except the one inside the chains, will be of size
1.

6.9.4 SST IR and Code Generation

The purpose of the previous phases was to extract from the input
rSCoP all the information needed to enable the actual implementa-
tion of an SST as an hardware microarchitecture. At the end of these
phases, the information is encoded in the form of an IR. The IR con-
tains:

• For each filter: an identifier; its data domain, which is the filter-
ing condition; the input and output streams, i.e. the input and
output communication channels

• For each equivalence group: an identifier; its iteration domain;
the array update formula; the input communication channels,
as well as the output one

• For each communication channel: an identifier; its minimum
size

Informations about the demux are not needed as its structure is in-
ferred from the iteration domain of the associated equivalence groups.
From the SST’s IR the hardware equivalent is generated employing
HLS, hence, it is required to generate the code for each module of
the microarchitecture: demuxes, equivalence groups and filters.The
communication channels will be implemented as FIFOs queues. The
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modules code can be generated using state of the art polyhedral
model tools, integrated with the additional information we need in
our case, such as read and write instructions on respectively input
and output ports of the communication channels. Notice that the
boundary transfer is actually made with a single channel from the
involved filter to the demux. No additional modules will be inserted
in between, as they are indeed unnecessary.

6.9.5 Pipelining the SST

Pipelining the equivalence groups can be an effective optimiza-
tion to increase the overal throughput. However, since an SST is a
composition of independent modules, this optimization could lead
to situations of deadlock. To completely avoid this situation, we
propose two solutions:

• The communication channels between the memory system and
any equivalence group could be oversized, thus allowing the
memory system to proceed even if the equivalence groups are
stalled. However, to compute the communication channels size
the pipeline depth of each equivalence group must be known,
something that in general is not easy to do. Also, this solution
will cause the SST to enjoy no more the optimal Full Buffering
property.

• Only the innermost loop of each equivalence group is pipelined,
which results into the flushing of the pipeline right when the
memory system starts to send data to another equivalence group,
completely avoiding the possibility of a deadlock within an
SST.

There is a last, important, remark to be made. In the case of the pres-
ence of spatial dependencies, the related equivalence groups cannot
be pipelined.

6.9.6 Scaling the Problem Size

Whenever the available on-chip memory is not large enough to
allow the instantiation of all the communication channels, there is
always the possibility to tackle the problem by trading bandwidth
requirements for on-chip memory usage [59]. In practice, this means
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that there is always the possibility to remove the largest communi-
cation channel and replace it with an additional input data stream
from the off-chip memory. The process could be repeated itera-
tively until the overall memory requirements are compatible with
the available resources. Notice that this trade-off possibility is how-
ever limited by the available bandwidth.
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CHAPTER7
Scaling Up: the SSTs Queuing Technique

IN this Chapter, we build on the findings of the previous one in
order to devise a mechanism to generate chains of hardware ac-
celerators. By adding Streaming Stencil Time-steps (SSTs) to

the chain, we linearly increase the overall throughput of the system
while maximizing its overall power efficiency. Being streaming in
nature, it is easy to delineate a mechanism to chain multiple acceler-
ators together, forming what is subsequently called a SST-queue. The
methodology allows to effectively scale-up the resulting computing
system, as we show in the experimental part of this Chapter.

7.1 Introduction

The functionality of an SST is to perform the stencil computation
associated to a single time-step. Hence, having an hardware accel-
erator built up of a lone SST would mean that, in order to perform
more time-steps, the same SST should be employed over and over
again, transferring back and forth data from the off-chip memory to
the accelerator itself. These frequent off-chip memory transfers can

171



i
i

“phdthesis” — 2015/12/14 — 9:35 — page 172 — #188 i
i

i
i

i
i
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effectively bound the achievable performance, as an off-chip mem-
ory access is definitely much more expensive in terms of latency
compared to data transfers within the accelerator. This is an issue
already known in Iterative Stencil Loops (ISLs)’ literature, as their
inherent memory boundedness is a major reason due to which ob-
taining high performance codes and accelerators is in general an in-
volved task. A possible solution to this problem could be to have
a technique to limit as much as possible the off-chip memory trans-
fers, exploiting the available hardware resources to offload not only
the computation within a single time-step, but also the data trans-
fers across time-steps. Our SST queuing technique goes exactly in
this direction.

7.2 SST Queuing

The key point of the queuing technique is that multiple SSTs are
arranged in a queue fashion, which means that, within the queue,
the output of one SST is input to the next. Off-chip memory transfers
occur only at the beginning and at the end of the queue. This implies
that having a queue of arbitrary length or a single SST will involve
the same volume of off-chip/on-chip memory transfers, which in turn
means that the bandwidth requirements will remain constant, or more
precisely, they are independent from the queue length. Therefore,
the off-chip memory latency bottleneck is progressively alleviated
as the queue length increase, since a greater volume of computation
will be performed with the same off-chip bandwidth requirements.

In some occasions the SSTs data flow can be managed by an ad-
ditional module, which is always aware of the progress of the com-
putation as well as the total number of time-steps to be performed,
which we called mux. This happens in two cases (which can also
occur together):

• the number of SSTs – and hence the corresponding number of
time-steps – of the hardware accelerator is not an exact divider
of the total number of iterations. In this case the mux is respon-
sible to break the computational flow when the total number of
time-steps of the ISLs is performed, and redirect the output to
the off-chip memory.

• the queue length is large enough to be able to cycle the data
flow, redirecting the output stream of the queue back to the
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queue itself, instead of transferring it back to the off-chip mem-
ory. We called this condition queue looping, which will be fur-
ther detailed in section 7.4. In this case the mux is responsible
to break this loop when the total number of time-steps has been
executed.

It is important to note that the streaming nature of a single SST al-
lows to have, at a certain point, all the SSTs concurrently processing
on a “portion” of the stream, having therefore a pipelined computa-
tion within the queue. Also, the system is fully scalable, as the only
constraint is the total amount of available resources. The fact that the
achievable queue length is completely independent from the avail-
able bandwidth allows linear scalability of the size of the accelera-
tor: the queue length can be enlarged until the available resources
are saturated.

Table 7.1: A visualization of the pipelined execution within the queue.

Furthermore, we claim that employing the SSTs queuing will
speed up the Reduced Static Control Part (rSCoP) computation, and hence
the throughput, by a pseudo-linear factor, dependent on the number
of SSTs instantiated within the hardware accelerator, i.e. the queue
length. We provide a simple proof of this claim.

Proof. Let us model the completion time C of a given ISL when us-
ing an SST as hardware accelerator. We take as reference the state of
a single grid point between two subsequent time-steps, thus:

C = T ∗ (N ∗ (min + sst+mout))
where T ∈ N is the total number of time-steps, N ∈ N is the total
number of points to be updated,min ∈ N is the number of clock cy-
cles a given point takes to be transferred from the off-chip memory
to the hardware accelerator, sst ∈ N is the number of clock cycles
spent from an SST to actually update it, andmout ∈ N is the number
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of clock cycles it takes to be transferred back to the off-chip memory.
Then, if we employ queuing, with a queue of length q ∈ N, the com-
pletion time Cq is:

Cq = T
q
∗ (N ∗ (min + q ∗ sst+mout))

Whenever T or N are large numbers:
T ∗N� q and T ∗N� min + sst+mout

it would mean that:
T ∗N ∗ (min + sst+mout) ≈ T ∗N ∗ (min + q ∗ sst+mout)

hence:
Cq ≈ C

q

Remark 1. The speedup is pseudo-linear because of the approximation T ∗
N∗(min+sst+mout) ≈ T ∗N∗(min+q∗sst+mout), that is however
a reliable approximation given the fact that N and T are very large in real
ISLs.

Queue Length Estimation

Within the proposed design automation flow, the queue length es-
timation is a process that takes as input:

• The estimated resource usage of an SST given from the High
Level Synthesis (HLS), but also the resource usage of the com-
munication channels, both platform dependent;

• The resource vector Rmax which represents all the available re-
sources;

• The total number t of time-steps of the rSCoP.

By employing this information, the estimation process is represented
as simple division between Rmax and the sum of the needed re-
sources for both the communication channels and the SST, how-
ever limited in that the queue length q must be q 6 t. This lim-
itation is nevertheless virtually nonexistent as in general ISLs are
characterized by a very large number of time-steps. Interestingly,
it should be noticed that there is an analytical bound to the queue
length, and therefore a maximum number Qmax of iterations to be
queued. When this analytical bound is reached, the stream can then
flow back again in the queue instead of being transferred back to the
off-chip memory, thus reaching the maximum achievable speed-up.
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We call the condition for which the hardware accelerator is able to
perform all the iterations of the ISL queue looping.

Definition 35. Qmax estimation. An SST holds a fraction f of the sum
of all the arrays involved in the computation, whose total size is SA, hence:

f = SA

k

Therefore, the number of SSTs to be queued in order to perform queue
looping is: Qmax = min{q |

∑
q f > SA , q ∈ N}

Lastly, we recall, as shown in Figure 6.6, that the actual imple-
mentation of the hardware accelerator could be an iterative process,
since the estimated queue length may be too high to be able to in-
stantiate the accelerator, whenever the available resources are not
enough. This is indeed a platform related situation, as it depends
on the accuracy of the resource estimation provided by the specific
HLS tool. A simple solution could be to iteratively decrement the
queue length (Figure 6.6) until the accelerator fits onto the available
resources.

Handling More than One Input

The solution to handle more than one input array when per-
forming the SSTs queuing has already been described in Section 32.
The only detail that must be added is that in such a case, the HLS
must produce two different versions of the SST: one with the added
streams, and one with the only actual output. The filter within a
chain demanded to forward the data will be the first. The way in
which they are arranged is determined within the module integra-
tion phase.

7.3 Experimental Results

In order to test the proposed methodology and resulting hard-
ware accelerator we select a number of significant ISL benchmarks,
manipulate the code as described in Section 7.4, and generate the
resulting system using Xilinx Vivado Design Suite. The SST archi-
tecture derivation has been aided by state of art polyhedral analysis
tools. Specifically, we employ the following components:

• Clan (Chunky Loop ANalyzer), to extract a polyhedral Interme-
diate Representation (IR) from the source code;
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• Candl (Chunky ANalyzer for Dependencies in Loops), to compute
polyhedral dependencies, and thus the corresponding Data De-
pendency Graph, from the polyhedral IR.

The SST’s modules have been implemented using Vivado HLS (v2014.3.1).
Both SST’s modules integration and queuing have been performed
using the Vivado (v2014.3.1) toolchain, which is also employed to
synthesize and implement the resulting RTL. Synthesis and imple-
mentation have been performed with an Intel Core i7-3630QM, fea-
turing an 8GB DDR3 RAM. These specifications allowed us to push
queuing only to a fraction of the total available resources, as we sys-
tematically ran out of memory during place and route with larger
designs (i.e., with more SSTs enqueued). All the tests have been
performed on a single VC707 board, which comes with a Virtex-7
XC7VX485T Xilinx Field Programmable Gate Array (FPGA) chip.
Along with other resources, the board features 1GB of DDR3 DRAM,
which we also employed in our tests as reference off-chip memory.

7.3.1 Test Cases

Let us now focus on the benchmarks selected to validate both the
methodology and the accelerator.

• jacobi2D: the fundamental computational kernel of 2D PDE solvers,
and due to its nature it is well suited to perform SST queu-
ing. As previously stated, our limited computational resources
forced us to limit the queue length in order to successfully com-
plete the accelerator synthesis and implementation. However,
with jacobi2D, we were still able to push queuing up to a con-
siderable number of SSTs without running out of memory dur-
ing the synthesis process.

• jacobi3D: a 3-dimensional version of the above benchmark.

• seidel2D: this ISLs contains spatial dependencies between grid
points updates, hence it has no trivial and/or explicit paral-
lelization opportunities. This is usually the most complex ker-
nel for automatic tools to analyze, and is relevant to test how
well our methodology performs in the worst case (from the
standpoint of data dependencies).

• 3D31pt: a 31-point 3D, compute- and memory-intensive ISL
with variable coefficients, and thus multiple input arrays. This
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kernel is employed in different applications, and relates to 3D
field solvers.

• heat3D: a discretized 3D heat equation stencil with non-periodic
boundary conditions.

• 3D7pt: a 3D 7-point stencil from the Berkeley auto-tuner frame-
work.

All the benchmarks have been implemented using single precision
floating point data types, both in hardware and Central Processing
Unit (CPU).

7.3.2 Experimental Settings and Goals

We explored multiple operating frequencies during synthesis of
the hardware accelerator. We could systematically synthesize with-
out running in timing closure issues and/or out of memory excep-
tions at 200MHz, which is our target frequency for the subsequent
experiments. The datapath towards the off-chip memory is 32 bits
wide, and the frequency 200MHz, so that the available bandwidth is
800 MB/s.

The experiments on the CPU side were conducted on an Intel
Xeon E5-1410, a quad-core processor running at 2.8 GHz, with a
peak performance of 179.2 GFLOPS. The benchmarks were com-
piled using Pluto [46] with diamond tiling activated, a state of the
art technique for stencil optimization. For each of them we com-
piled both the original version and a diamond-tiled version running
on 8 threads, where the optimal tile sizes have been determined em-
pirically with a limited amount of search. Notice that for seidel2D,
Pluto was not able to compile a diamond-tiled version, as its inher-
ent sequentiality makes it not suitable parallelization-oriented opti-
mizations.

Our goal is to demonstrate different aspects of our design:

• the efficient usage of the on-chip memory resources realized
by an SST allows to treat problem sizes whose implementation
would otherwise not be possible via direct synthesis or with
trivial manipulation of the original source code via HLS,

• the scalability given by the SSTs queuing ensures a pseudo-
linear increase in throughput, while keeping the off-chip band-
width constant,
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• improved power efficiency with respect to a general purpose
processor, specifically when scaling out the design by queuing
multiple SSTs.

7.3.3 Resource Usage

In this section we show the resource usage for all the bench-
marks, expressed as a percentage of the total available resources
(Figure 7.2). First of all, note how none of the benchmarks could nei-
ther be directly synthesized via HLS, nor synthesized without heavy
hardware-oriented code restructuring (by also applying non trivial
co-design considerations).

We have been able to synthesize successfully – i.e. without run-
ning out of memory during synthesis – 48 SSTs for jacobi2D. For
3D31pt we could not synthesize more than 4 SSTs without running
out of memory during the synthesis process on our machine, while
for 3D7pt, jacobi3D and heat3D we stopped at 8 SSTs for analogous
reason. Seidel2D has spatial dependencies within points updates,
thus a pipelined version cannot be obtained. Hence, only a no-
pipeline version has been tested. We remark that in this case we
were able to achieve, without running out of memory during syn-
thesis, a queue length of 10 SSTs. For 3D31pt we provide the floor-
plans of the 1 (in Figure 7.3) and 4 SSTs (in Figure 7.3) designs to
visualize resource consumption and energy proportionality.

As we show in Figure 7.2, our methodology allows to consume
an amount of resources proportional to the number of SSTs enqueued,
with a correspondingly proportional increase in throughput. Thus,
data clearly shows that our methodology is energy-proportional, a
very desirable feature of systems, in general, and heterogeneous sys-
tems, in particular.

7.3.4 Performance

The performance of all the benchmarks are reported in Figure
7.5. Notice how, in all cases, the enlargement of the queue of SSTs
corresponds to a pseudo-linear throughput speedup (as in Figure
7.6). Hence, data shows how our approach scales by design. It is also
important to remark that the performance comparison between the
proposed solution and the CPU must only be intended to provide at
a glance an insight of the potential of our accelerator. As previously
stated, the embedded system employed for validation was able to
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Table 7.2: Resource usage of the accelerator for all the benchmarks. Legend: Flip
Flops(FFs) (circles), Look Up Tables (LUTs) (triangles), Block RAMs (BRAMs)
(squares), Digital Signal Processing Blocks (DSPs) (diamonds). Linear fits
exhibit an R2 coefficient always greater than 0.99. We recall that R2 is the
coefficient of determination, a coefficient ranging from 0 to 1 that indicates
how well data fit the prediction model, which in this case is linear.

deliver a maximum bandwidth of only 800MB/s, that is much less
than the available bandwidth on the CPU. Future work will address
this issue focusing on the design of a much more efficient underlying
system, able to deliver sustained bandwidth and interface our hard-
ware accelerator with a proper host processor – probably employing
PCI-Express as communication bus.

7.3.5 Power Efficiency

Figure 7.7 shows the power efficiency normalized to the CPU.
We measure power consumption at the wall, using a wattmeter.
We claim that this methodology is sufficiently accurate for this ex-
periment as the CPU spends most of the power on a compute in-
tensive workload – CPU and RAM accesses, specifically. For all
benchmarks, our final accelerator has a better power efficiency than
the CPUs. This is in line with state-of-the-art works; however, our
methodology allows to push the utilization of the target device, and
thus to push the power efficiency to the limit imposed by the algo-
rithm, device, and synthesis process (which all contribute to setting
a hard limit to the power efficiency of a device). Data show that our
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Table 7.3: Floorplan of the 1 SST. In blue, the Microblaze used as host CPU to
validate the accelerator. In green, the DDR3 controller. In red, the DMA. In
ocher, the AXI interconnect of the design. In lily, violet, purple and pink, the
various SSTs.
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Table 7.4: Floorplan of the 4 SSTs queued designs implementing 3D31pt. In
blue, the Microblaze used as host CPU to validate the accelerator. In green,
the DDR3 controller. In red, the DMA. In ocher, the AXI interconnect of the
design. In lily, violet, purple and pink, the various SSTs. Observe how the
relatively compactness of each accelerator allows the design to scale in resource
linearly with each added IP.
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Table 7.5: Throughput, in GFLOPS. CPU refers to the Intel Xeon E5-1410.
“diamond” still refers to the throughput obtained on the Xeon, but running
an 8-threaded version of the benchmarks, compiled using Pluto with diamond
tiling activated. Finally, the other categories indicate the number of enqueued
SSTs.

methodology not only is energy-proportional, but it also allows the
system to push the limits of the system’s power efficiency, again a
desirable feature when thinking about larger, scaled out systems.

182



i
i

“phdthesis” — 2015/12/14 — 9:35 — page 183 — #199 i
i

i
i

i
i

7.3. Experimental Results

2

4

6

heat3D
0 1 2 3 8

0

10

20

jacobi2D
02 8 32 48

2

3

4

3D31pt
1 2 3 4

1

2

3

3D7pt
0 1 2 3 8

0

0.2

0.4

seidel2D
0 1 2 8 10

0.5
1.0
1.5
2.0
2.5

jacobi3D
0 1 3 8

Table 7.6: Throughput, in GFLOPS; hardware accelerators only. The number on
the x-axis represents the number of enqueued SSTs. Also in this case, linear
fits exhibit an R2 coefficient always greater than 0.99.
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Table 7.7: Power Efficiency ratio, normalized to the CPU. CPU refers to the Intel
Xeon E5-1410. “diamond” still refers to the Xeon, but running an 8-threaded
version of the benchmarks, compiled using Pluto with diamond tiling activated.
Finally, the other categories indicate the number of enqueued SSTs.
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7.4 SST Generator

We developed a compiler that automates the generation of an
SST-based architecture, SST Generator.

The methodology used to obtain the Streaming Stencil Time-step
(SST) hardware accelerator is divided by three steps: extraction, in-
termediate representation and synthesis. During the extraction part,
the pieces of code to accelerate in hardware are extracted from an
source file written in C. This is done using the clan library, that im-
plements the parser and produces a polyhedral representation of
the relevant code (in our case, the code of the Iterative Stencil Loop
(ISL)). After the extraction phase the code passes through two ma-
nipulation steps, namely Streaming Oriented Graph (SOG) and Stream-
ing Oriented Architecture Graph (SOAG) generation. Finally, we
translate the resulting data structure into hardware.

The first IR is obtained from the exact Data Dependency Graph
(DDG) containing the Read After Write (RAW) dependencies of the
previously extracted code. The DDG is computed using the candl
library that analyzes the output obtained by the clan library. The first
intermediate representation is the result of manipulations done on
the DDG. The dependence arcs that represent a dependence over the
temporal dimension of the ISL are removed. This is done because
the relevant dependencies are the ones involved in the flow of data
for a single timestep, so the dependencies along the time dimension
are not relevant.

After the removal of the superfluous arcs, each node of the DDG
is substituted with the matrix access that the respective statement
performs. We call this new graph SOG. In a SOG each node repre-
sents an access to a matrix done by a statement. The access can ei-
ther be a read or a write access, and each arc shows the flow of data
between such accesses. All the read nodes are connected to their re-
spective write node. The SOG is further simplified removing paths
that do not alter data, whose only effect is delaying the propagation
of that information (copy dependencies).

Afterwards, the SOG is further translated into the last intermedi-
ate representation, the SOAG. The SOAG stores all of the informa-
tion required to build the actual hardware architecture. Each node
in a SOAG models a hardware component that will be part of the fi-
nal architecture, and each arc between two nodes models what will
be a real wiring between hardware modules. This graph contains
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Throughput Power Efficiency FF LUT BRAM DSP

(GFLOPS) (GFLOPS/W) (%) (%) (%) (%)

CPU + diamond tiling 20.458 0.455 - - - -
8 SSTs 3.674 0.636 4.70 8.31 5.44 2.71
32 SSTs 14.345 2.299 9.81 15.48 10.34 10.86
48 SSTs 21.343 3.319 13.22 20.29 13.69 16.29
72 SSTs 31.204 4.649 18.33 27.48 18.72 24.43

Table 7.1: jacobi2D.

three kinds of nodes. First there are the filters, that memorize data
from the data stream. They stream data to the components that per-
form kernel’s actual computation. FIFOs accumulate these tempo-
rary data that will be used in future iterations/timesteps. Second,
there is the computational kernel, which is the part that performs
actual computation. Finally, there is the demux, a component in
charge of reconstructing the output stream. During the construction
of the SOAG, the required information are obtained using Polyhe-
dral Analysis (PA). PA allows to decide the order the filters need
to have to avoid deadlock in the final architecture, to compute the
minimum size of each FIFO, and to tailor all the modules of the SST
for the particular ISL taken into account.

There are few steps to perform in order to obtain a SOAG from
a SOG. For each different matrix accessed in the ISL, an input chan-
nel needs to be instantiated. It will contain the modules filtering the
streamed matrix to the kernel. Within each channel, the filters need
to be ordered in inverse lexicographical in order to avoid deadlocks
that will halt the architecture. Between each pair of communicating
filters we instantiate a correctly sized FIFO. Their minimum size is
computed through the analysis of the iteration domain associated to
the ISL formula. Lastly, the demux is connected to the kernel and
the input channel, allowing the correct reconstruction of the out-
put matrix. The synthesis, using the information coming from the
SOAG, produces a bitstream that can be used to program an Field
Programmable Gate Array (FPGA) board. The SST itself is stored in
a separate data structure in order to be able to build arbitrarily deep
SST queues.
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Table 7.8: Experimental setup. Power absorption is measured at AC level, which
is common to both host system, FPGA 1, and FPGA 2.

Throughput Power Efficiency FF LUT BRAM DSP

(GFLOPS) (GFLOPS/W) (%) (%) (%) (%)

CPU 0.910 0.020 - - - -
8 SSTs 0.275 0.045 11.17 22.46 6.22 6.86
12 SSTs 0.411 0.065 15.25 30.71 7.38 10.29
16 SSTs 0.546 0.083 19.34 38.97 8.67 13.71
24 SSTs 0.813 0.117 27.52 55.47 11.24 20.57

Table 7.2: seidel2D.

7.5 Dual FPGA Results

In the experiments we connect together two FPGAs using a se-
rial, point-to-point communication IP called Aurora, and instantiate
on them an increasingly deep SST queue; we repeat this procedure
for each benchmark. We collect data about throughput, logic occu-
pancy, and power efficiency; the data are compared to the state of
the art multicore CPU implementations in terms of throughput and
power efficiency. We finally elaborate on the scalability of the ap-
proach.

7.5.1 Experimental Settings

The proposed hardware implementation has been generated us-
ing Vivado Design Suite 2015.2. We employ SST Generator to gener-
ate the Register-Transfer Level (RTL) and the IP cores for each SST
module, starting from its C language specification.Synthesis and im-
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Table 7.10: Log Power efficiency and throughput comparison between CPU and
our implementation.

plementation have been executed with an AMD Athlon II X4 640,
featuring 8GB DDR3 RAM and running Ubuntu 14.04 x64. Due to
the tight timing requirements for synthesis and implementation, and
limited resources of the synthesis machine, we eventually ran out of
synthesis machine RAM and could exploit slightly more than half of
the available resources on any FPGA. All the tests have been per-
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Table 7.11: Resource consumption of increasingly lengthy SST-queues.
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Table 7.12: Power efficiency comparison between state-of-art CPU implementa-
tion (in blue) and our implementation (in red).

formed with two VC707 boards and with a host PC featuring an In-
tel Core i7 2675QM, 4GB DDR3 RAM, 256GB SSD running Ubuntu
14.04 x64. One of the two boards has been connected to the host PC
through the PCI Express interface; the other was connected to the
first through four coaxial cables, two for the TX channel and two for
the RX channels, as per Aurora IP requirements (see Figure 7.8 and
7.9). In all tests we stream a fixed amount of data to the system; we
measure the system when in “steady state” (i.e.: all SSTs are effec-
tively computing on the data stream). Data are received by the first
FPGA, processed by the SSTs therein, sent to the second through
Aurora, further processed by the SSTs therein, and finally returned
to the first FPGA where exchange with host memory happen, again
via PCI Express. Tests have been executed with an increasing num-
ber of SSTs. Both the transfer of the data and the measurement of the
performances have been managed by a custom application based on
the provided QuickPCIe Intellectual Property (IP) core. We measure
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Throughput Power Efficiency FF LUT BRAM DSP

(GFLOPS) (GFLOPS/W) (%) (%) (%) (%)

CPU + diamond tiling 18.982 0.422 - - - -
4 SSTs 0.679 0.119 4.87 8.12 9.91 0.85
6 SSTs 0.998 0.173 5.81 9.22 12.92 1.28
8 SSTs 1.318 0.226 6.74 10.31 15.93 1.71
16 SSTs 2.429 0.400 10.48 14.69 27.96 3.43
32 SSTs 4.260 0.654 17.95 23.44 52.04 6.86
48 SSTs 5.695 0.823 25.42 32.18 76.12 10.29

Table 7.3: jacobi3D.

Throughput Power Efficiency FF LUT BRAM DSP

(GFLOPS) (GFLOPS/W) (%) (%) (%) (%)

CPU + diamond tiling 22.988 0.511 - - - -
4 SSTs 0.869 0.146 6.97 10.06 9.91 1.72
8 SSTs 1.665 0.268 10.93 14.39 15.93 3.43
16 SSTs 3.094 0.458 18.85 23.02 27.96 6.86
32 SSTs 5.421 0.691 34.71 40.32 52.28 13.72

Table 7.4: heat3D.

power consumption at the Common AC power outlet.

7.5.2 Test Cases

The architecture has been validated against four benchmarks com-
prising relevant computational kernels in the linear algebra domain;
their representativeness justifies their wide adoption in literature
[28, 125]. These benchmarks are suitable for polyhedral-based op-
timisations and their structure permits to perform both SST genera-
tion and queuing. Additionally, their popularity allows us to fairly
compare with other works, specifically with [46]. We run bench-
marks activating diamond tiling on a more recent platform, that fur-
ther improves the results obtained by the authors, as per data shown
in Table 1 and Table 2. All the benchmarks have been tested with
single precision floating point data types; the problem dimension for
2D benchmarks is 1000x1000; 100x100x100 for 3D ones. All matri-
ces are dense. Total amount of FLOPS computation is computed by
inspection of the statically defined loops.
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7.5.3 Experimental Results

Referring to Figure 7.10, we observe how throughput increases
proportionally with the length of the SST queue, which is consistent
with the rationale behind the SST approach. Power efficiency tends
to improve and then saturate with an increasing number of SSTs.
This is a desirable feature as maximum FPGA utilization directly
translates in maximum power efficiency. After a given SST-queue
length, the system performs at full power efficiency while – theoret-
ically speaking – arbitrarily increasing the throughput (by increasing
the length of the queue). Additionally, we observe a linear increase
in resource consumption, as reported in Figure 7.11; this is expected,
as the computing system is the composition in a chain fashion of
multiple copies of the same IP/SST. Observe how higher dimen-
sional ISLs consume more local memory, and that seidel2D, which is
more control-intensive then the other kernels, consume more LUTs
to implement the custom control logic. These observations lead us
to claim that our system is energy-proportional: resources, through-
put, and power consumption proportionally grow together.

Let us now focus on the comparison with the optimal, state of
the art multi core implementations. We regard as optimal our im-
plementations as they are automatically parallelized using a locality-
aware, parallelizing compiler adopting the diamond-tiling optimiza-
tion strategy [46] (but for seidel2D, which is a benchmark not amenable
to diamond-tiling). As far as we know, this is the best approach to si-
multaneous extraction of parallelism and locality for our workloads.
As data show, after a given SST queue, power efficiency of proposed
solution becomes better than CPU’s; up to 10,11x in the case of sei-
del2D. We expect that longer SSTs queues translates into further im-
provements, as we see from Figure 7.10 that we haven’t reached the
power efficiency limit of our approach yet, with this number of SSTs.
However, our synthesis machine cannot synthesize larger designs
due to lack of main memory. Nonetheless, there is still margin for
further improvements.
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CHAPTER8
Conclusions

IN this thesis we introduced, explored, and partly addressed the
problem of how to improve the power efficiency of reconfig-
urable hardware based computing systems, with a specific fo-

cus on high performance computing, polyhedral analysis, high level
synthesis, and their inter relationships.

In the first part, we elaborated on the advantages of using Partial
Reconfiguration (PR) to generate high performance reconfigurable
hardware based accelerators. After demonstrating gains in terms of
energy delay product and execution time, we introduced a mech-
anism to partition a set of hardware accelerators to distribute the
workload among multiple computing elements, in the light of fu-
ture multi-FPGA platforms.

Afterwards, we delineated how Polyhedral Model (PM) can be
used to restructure the code to achieve better parallelization, obtain-
ing as a final result an increase of the efficiency of hardware circuits.
The proposed methodology faces the problem of creating an archi-
tecture that is suitable for the problem of accelerating the execution
of data parallel codes when tiles are synthesized out of them. In
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the experimental tests we show a slight increase in power consump-
tion in the more parallel architecture respect to the basic High Level
Synthesis (HLS) implementation, which is however largely compen-
sated by speed ups ranging from 3x to 7x in overall execution time.
In fact, the worst power consumption increase is in the order of 6%
(about 100mW on our platform), a small term compared to the large
gains in throughput which directly translate into better power effi-
ciency. As explained in the previous Chapters, this methodology is
effective only for intrinsically parallel algorithms and the additional
limitation induced by the pureness of the input codes. As already ex-
plained, implementing synchronized access to shared data not only
results in bottlenecks, but also a lot of effort should be put to design
this features. However, as the focus is set on scientific algorithms
this is a limited (if not irrelevant at all) issue, as most of those algo-
rithms are easily expressible in this form.

Subsequently, we proposed a design automation flow to acceler-
ate a target ISL on FPGA, consisting of a queue of architectures de-
manded to perform a single ISL time-step, the SST. We efficiently ex-
ploit the available resources realizing an optimal Full Buffering, and
ensure a quasi-linear throughput speedup when enqueuing multi-
ple SSTs, taking into account both memory and bandwidth consid-
erations. We automatically derive the accelerator from the original
source code, employing the polyhedral model in combination with
HLS. Experimental results show an efficient usage of the on-chip
memory resources realized by an SST, allowing to deal with problem
sizes that would otherwise be untreatable with a direct synthesis of
the original code via HLS. We also show that the SSTs queuing tech-
nique ensures a pseudo-linear increase in throughput obtained with
constant bandwidth requirements. Also, the comparison shows that
the proposed accelerator has the potential to outperform all compa-
rable solutions thanks to its inherent scalability and specialization
of the algorithm with respect to ISLs; overall power efficiency rivals
the currently available top power efficient systems, and is expected
to grow with the increase of the number of SSTs within the queue
(i.e.: with the increase of logic utilization).

8.1 Future works

The first goal is to implement the final automatic toolchain. The
second goal is to tighten the integration between task carried on by
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difference researchers, like for example [57, 60, 62]. The third future
goal will be to prove the feasibility of the multi-FPGA solution in
order to implement memory intensive algorithms. Extensive tests
on other computational kernels split on multiple FPGA will be re-
quired to demonstrate how performance scales with the number of
computing elements. In Low-Level Virtual Machine (LLVM) related
area, we already use Clang (via Chunky Loop ANalyzer (CLAN)) to
translate code into PM. Till now we are using source-to-source trans-
formation to create C file to feed Xilinx tools. Following the typical
LLVM schema (front-end, IR, back-end) we could implements a dif-
ferent tool, that exploit directly the intermediate representation to
generate the RTL of the circuits: in other words we could imple-
ment a typical LLVM back-end. The first step in this direction will
be analyze and profile what has been already developed by LegUp
project. Finally, the integration of this approach with large scale clus-
ter software systems (like Hadoop) will prove beneficial in order to
demonstrate the power efficiency figures in a more realistic comput-
ing system.
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